Simulated performance of a small-animal PET scanner based on monolithic scintillation detectors

Abstract The performance of a small-animal positron emission tomography (PET) scanner based on monolithic scintillation detectors read-out by avalanche photo-diode arrays has been investigated by simulation. By minimizing dead space, both within and between the modules, these detectors offer increased detection efficiency compared to pixellated detectors. The spatial resolution of the scanner was investigated in 2-D by simulating a point source at various radial distances from the center. To model the detector response, measured detector line-spread functions were used. An optimum value of approximately 1 mm FWHM was found at 10 mm radial distance from the scanner central axis. Point-source sensitivity profiles in the radial and axial directions were simulated at 1 MBq activity using the Monte-Carlo code GATE. They indicated that monolithic designs increase the sensitivity roughly by a factor of two compared to pixellated designs. NECR curves simulated for these scanner designs show no significant degradation of the performance for activities up to 40 MBq.

[1]  C Lartizien,et al.  GATE: a simulation toolkit for PET and SPECT. , 2004, Physics in medicine and biology.