COMPUTER-AIDED DIAGNOSIS OF BRAIN TUMORS USING IMAGE ENHANCEMENT AND FUZZY LOGIC DIAGNÓSTICO ASISTIDO POR COMPUTADORA DE TUMORES CEREBRALES UTILIZANDO MEJORA DE LA IMAGEN Y LÓGICA DIFUSA
暂无分享,去创建一个
Francisco J. Gallegos-Funes | Alberto J. Rosales-Silva | Jean Marie Vianney-Kinani | Alfonso Arellano | A. Rosales-Silva | F. Gallegos-Funes | Alfonso Arellano
[1] Chunming Li,et al. Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[2] Robin N. Strickland. Image-Processing Techniques for Tumor Detection , 2007 .
[3] Jerry L. Prince,et al. Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..
[4] L O Hall,et al. Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.
[5] Tamalika Chaira,et al. Fuzzy Image Processing and Applications with MATLAB , 2009 .
[6] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[7] Paul C. Lauterbur,et al. Principles of magnetic resonance imaging : a signal processing perspective , 1999 .
[8] Ronald Fedkiw,et al. Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.
[9] Isaac N. Bankman,et al. Handbook of medical image processing and analysis , 2009 .
[10] James M. Keller,et al. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .
[11] Raghu Krishnapuram. Generation of membership functions via possibilistic clustering , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.
[12] James M. Keller,et al. The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..