A type-theoretical definition of weak ω-categories
暂无分享,去创建一个
[1] Alexander Grothendieck,et al. Pursuing Stacks , 2021, 2111.01000.
[2] Michael Batanin,et al. Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .
[3] I. Moerdijk,et al. Sheaves in geometry and logic: a first introduction to topos theory , 1992 .
[4] Aleks Kissinger,et al. Globular: an online proof assistant for higher-dimensional rewriting , 2016, Log. Methods Comput. Sci..
[5] Guillaume Brunerie,et al. On the homotopy groups of spheres in homotopy type theory , 2016, ArXiv.
[6] Andrej Bauer,et al. Homotopy Type Theory: Univalent Foundations of Mathematics , 2013, ArXiv.
[7] Clemens Berger,et al. A Cellular Nerve for Higher Categories , 2002 .
[8] Thorsten Altenkirch,et al. A Syntactical Approach to Weak ω-Groupoids , 2012 .
[9] GROTHENDIECK ∞-GROUPOIDS. And Still Another Definition of ∞-categories , 2010 .
[10] Peter Dybjer,et al. Internal Type Theory , 1995, TYPES.
[11] Benno van den Berg,et al. Types are weak ω‐groupoids , 2008, 0812.0298.
[12] Robert Paré. Simply connected limits , 1990 .
[13] Georges Maltsiniotis. Grothendieck $\infty$-groupoids, and still another definition of $\infty$-categories , 2010 .
[14] P. Lumsdaine. WEAK ω-CATEGORIES FROM INTENSIONAL TYPE THEORY , 2008 .
[15] John Cartmell,et al. Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..