Prospects and Limitations of Stacked-FET Approaches for Enhanced Output Power in Voltage-Controlled Oscillators

This paper reports on the emerging potential of a stacked field-effect transistor (FET) approach with respect to maximum achievable RF output power with special remarks on high electron-mobility transistor (HEMT) based series feedback oscillator monolithic microwave integrated circuits (MMICs). A stacked-FET oscillator can provide benefit in several ways-in the form of an improved RF output power, a high drain efficiency, or a stabilized oscillation behavior, even for changing load impedances. The limitation of the maximum number of transistors is analyzed with reference to the maximum achievable output power of stacked devices. This is done by describing the compromise between an increased voltage swing and a decreased RF output current. The output current is decreased since the current gain of a common gate device is smaller than unity. Based on the proposed theory a W-band stacked-FET voltage-controlled oscillator MMIC with an output power of 15 dBm and a drain efficiency of 23.3% was realized. The MMIC is based on the Fraunhofer IAF 50-nm gate-length metamorphic HEMT process. For an advanced evaluation of the power capability and the optimum target load of the utilized technology, an active W-band on-wafer load-pull system was implemented.

[1]  Ping-Yu Chen,et al.  An Ultra Low Phase Noise W-Band GaAs-Based PHEMT MMIC CPW VCO , 2003, 2003 33rd European Microwave Conference, 2003.

[2]  M. Schlechtweg,et al.  W-band MMIC VCO with a large tuning range using a pseudomorphic HFET , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[3]  Rudiger Quay,et al.  A 92 GHz GaN HEMT voltage-controlled oscillator MMIC , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[4]  Ali M. Niknejad,et al.  A W-Band Low-Noise PLL With a Fundamental VCO in SiGe for Millimeter-Wave Applications , 2014, IEEE Transactions on Microwave Theory and Techniques.

[5]  J. Papapolymerou,et al.  W-Band Oscillator on Metamorphic HEMT , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[6]  Jeng-Han Tsai,et al.  A W-Band Medium Power Amplifier in 90 nm CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[7]  D A Chan,et al.  A Compact W-Band CMOS Power Amplifier With Gain Boosting and Short-Circuited Stub Matching for High Power and High Efficiency Operation , 2011, IEEE Microwave and Wireless Components Letters.

[8]  Michael Schlechtweg,et al.  A low-power W-band receiver MMIC for amplitude modulated wireless communication up to 24 Gbit/s , 2014, 2014 Asia-Pacific Microwave Conference.

[9]  O. Ambacher,et al.  450 GHz amplifier MMIC in 50 nm metamorphic HEMT technology , 2012, 2012 International Conference on Indium Phosphide and Related Materials.

[10]  K. Aufinger,et al.  SiGe Bipolar VCO With Ultra-Wide Tuning Range at 80 GHz Center Frequency , 2009, IEEE Journal of Solid-State Circuits.

[11]  B. Floyd,et al.  V-band and W-band SiGe bipolar low-noise amplifiers and voltage-controlled oscillators , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[12]  Zhigong Wang,et al.  A 108 GHz GaAs MHEMT VCO MMIC , 2009, 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications.

[13]  Gabriel M. Rebeiz,et al.  A wideband high-efficiency 79–97 GHz SiGe linear power amplifier with ≫ 90 mW output , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[14]  A. Leuther,et al.  A PLL-Stabilized W-Band MHEMT Push-Push VCO with Integrated Frequency Divider Circuit , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[15]  H. Nyquist,et al.  The Regeneration Theory , 1954, Journal of Fluids Engineering.

[16]  Andrei Grebennikov,et al.  RF and Microwave Transmitter Design: Grebennikov/Transmitter Design , 2011 .

[17]  A. Gutierrez-Aitken,et al.  A 108-GHz InP-HBT monolithic push-push VCO with low phase noise and wide tuning bandwidth , 1999, IEEE J. Solid State Circuits.

[18]  J. Rollett Stability and Power-Gain Invariants of Linear Twoports , 1962 .

[19]  Peter J. Katzin,et al.  A new power amplifier topology with series biasing and power combining of transistors , 1992, IEEE 1992 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest of Papers.

[20]  Huei Wang,et al.  A W-band power amplifier in 65-nm CMOS with 27GHz bandwidth and 14.8dBm saturated output power , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[21]  G. A. Ellis,et al.  W-band InP DHBT MMIC power amplifiers , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[22]  Michal Odyniec Stability criteria via S-parameters , 1995, 1995 25th European Microwave Conference.

[23]  H. Massler,et al.  Metamorphic 94 GHz power amplifier MMICs , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[24]  Y. Takayama A New Load-Pull Characterization Method for Microwave Power Transistors , 1976 .

[25]  Ali M. Niknejad,et al.  Low-Power mm-Wave Components up to 104GHz in 90nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[26]  Qun Jane Gu,et al.  A W-band current combined power amplifier with 14.8dBm Psat and 9.4% maximum PAE in 65nm CMOS , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[27]  Peter Asbeck Stacked Si MOSFET strategies for microwave and Mm-wave power amplifiers , 2014, 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems.

[28]  Youngwoo Kwon,et al.  W-band monolithic oscillator using InAlAs/InGaAs HEMT , 1990 .

[29]  G. S. Dow,et al.  Monolithic W-band VCOs using pseudomorphic AlGaAs/InGaAs/GaAs HEMTs , 1992, GaAs IC Symposium Technical Digest 1992.

[30]  Mikko Kärkkäinen,et al.  W-Band CMOS Amplifiers Achieving +10 dBm Saturated Output Power and 7.5 dB NF , 2009, IEEE J. Solid State Circuits.

[31]  C. S. Whelan,et al.  W-band power metamorphic HEMT technology on GaAs , 2003, International Conference onIndium Phosphide and Related Materials, 2003..

[32]  Arnulf Leuther,et al.  Low-power wireless data transmitter MMIC with data rates up to 25 Gbit/s and 9.5mW power consumption using a 113 GHz carrier , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[33]  Jinho Jeong,et al.  A Watt-Level Stacked-FET Linear Power Amplifier in Silicon-on-Insulator CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.