Backbone and side chain NMR assignments for the N-terminal domain of the cell division regulator MinC from Bacillus subtilis

[1]  Frederico J. Gueiros-Filho,et al.  Genetic and Biochemical Characterization of the MinC-FtsZ Interaction in Bacillus subtilis , 2013, PloS one.

[2]  I. Tanaka,et al.  Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. , 2012, Acta crystallographica. Section D, Biological crystallography.

[3]  J. Luirink,et al.  Characterization of ftsZ Mutations that Render Bacillus subtilis Resistant to MinC , 2010, PloS one.

[4]  J. Lutkenhaus,et al.  Examination of the interaction between FtsZ and MinCN in E. coli suggests how MinC disrupts Z rings , 2010, Molecular microbiology.

[5]  M. Bramkamp,et al.  Division site selection in rod-shaped bacteria. , 2009, Current opinion in microbiology.

[6]  Jeff Errington,et al.  Bacterial cell division: assembly, maintenance and disassembly of the Z ring , 2009, Nature Reviews Microbiology.

[7]  Yoshikazu Kawai,et al.  Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation , 2009, The EMBO journal.

[8]  J. Lutkenhaus,et al.  The conserved C‐terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinCC/MinD , 2009, Molecular microbiology.

[9]  J. M. Sauder,et al.  Crystal structure of the septum site-determining protein minC from Salmonella typhimurium , 2009 .

[10]  J. Errington,et al.  A novel component of the division‐site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD , 2008, Molecular microbiology.

[11]  J. E. Patrick,et al.  MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis , 2008, Molecular microbiology.

[12]  D. Scheffers The effect of MinC on FtsZ polymerization is pH dependent and can be counteracted by ZapA , 2008, FEBS letters.

[13]  L. Rothfield,et al.  Spatial control of bacterial division-site placement , 2005, Nature Reviews Microbiology.

[14]  J. Beckwith,et al.  Diverse Paths to Midcell: Assembly of the Bacterial Cell Division Machinery , 2005, Current Biology.

[15]  S. Ramirez‐Arcos,et al.  Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation. , 2005, Microbiology.

[16]  Jan Löwe,et al.  Structural insights into FtsZ protofilament formation , 2004, Nature Structural &Molecular Biology.

[17]  J. Errington,et al.  Coordination of Cell Division and Chromosome Segregation by a Nucleoid Occlusion Protein in Bacillus subtilis , 2004, Cell.

[18]  J. Lutkenhaus,et al.  A conserved sequence at the C‐terminus of MinD is required for binding to the membrane and targeting MinC to the septum , 2003, Molecular microbiology.

[19]  G. King,et al.  Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Lutkenhaus,et al.  Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Löwe,et al.  Crystal structure of the bacterial cell division inhibitor MinC , 2001, The EMBO journal.

[22]  J. Lutkenhaus,et al.  The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. D. de Boer,et al.  MinDE-Dependent Pole-to-Pole Oscillation of Division Inhibitor MinC in Escherichia coli , 1999, Journal of bacteriology.

[24]  J. Errington,et al.  Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. , 1998, Genes & development.

[25]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[26]  H. Erickson,et al.  FtsZ, a prokaryotic homolog of tubulin? , 1995, Cell.

[27]  Weontae Lee,et al.  A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity , 1994 .

[28]  L. Kay,et al.  Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques , 1994, Journal of biomolecular NMR.

[29]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[30]  M. Wittekind,et al.  HNCACB, a High-Sensitivity 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins , 1993 .

[31]  T Szyperski,et al.  Protein dynamics studied by rotating frame 15N spin relaxation times , 1993, Journal of biomolecular NMR.

[32]  Paul A. Keifer,et al.  Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity , 1992 .

[33]  L. Rothfield,et al.  The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. , 1991, The EMBO journal.

[34]  E. Bi,et al.  Interaction between the min locus and ftsZ , 1990, Journal of bacteriology.

[35]  S. Fesik,et al.  Heteronuclear three-dimensional NMR spectroscopy of isotopically labelled biological macromolecules , 1990, Quarterly Reviews of Biophysics.

[36]  L. Kay,et al.  A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin , 1990 .

[37]  L. Kay,et al.  Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. , 1989, Biochemistry.

[38]  P. Graumann Bacillus : cellular and molecular biology , 2007 .

[39]  B D Sykes,et al.  Chemical shifts as a tool for structure determination. , 1994, Methods in enzymology.

[40]  N. Nanninga Cell division and peptidoglycan assembly in Escherichia coli. , 1991, Molecular microbiology.