Precipitation reconstruction from climate-sensitive lithologies using Bayesian machine learning

[1]  Fabio Tozeto Ramos,et al.  Bayesian Joint Inversions for the Exploration of Earth Resources , 2013, IJCAI.

[2]  Rohitash Chandra,et al.  Efficiency and robustness in Monte Carlo sampling of 3-D geophysical inversions with Obsidian v0.1.2: Setting up for success , 2018, Geoscientific Model Development.

[3]  Michel Crucifix,et al.  Bayesian model selection for the glacial–interglacial cycle , 2015, 1511.03467.

[4]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[5]  R. Müller,et al.  Modeling the Miocene Climatic Optimum. Part I: Land and Atmosphere* , 2011 .

[6]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[7]  Mrinal K. Sen,et al.  Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion , 1996 .

[8]  W. W. Hay Paleoclimate Modelling , 2021, Encyclopedia of Geology.

[9]  Murali Haran,et al.  Piecing together the past: statistical insights into paleoclimatic reconstructions , 2010 .

[10]  B. Arıkan Modeling the paleoclimate (ca. 6000–3200 cal BP) in eastern Anatolia: the method of Macrophysical Climate Model and comparisons with proxy data , 2015 .

[11]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[12]  Bruno Sansó,et al.  A Nonstationary Multisite Model for Rainfall , 2000 .

[13]  F. Joos,et al.  A Coupled Dynamical Ocean–Energy Balance Atmosphere Model for Paleoclimate Studies , 2011 .

[14]  Douglas Nychka,et al.  Bayesian Confidence Intervals for Smoothing Splines , 1988 .

[15]  S. Philander,et al.  The Late Cretaceous: Simulation with a coupled atmosphere‐ocean general circulation model , 1997 .

[16]  C. Scotese,et al.  Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate , 2013 .

[17]  Sally Wood Applications of Bayesian smoothing splines , 2013 .

[18]  J. de la Puente,et al.  A stochastic rupture earthquake code based on the fiber bundle model (TREMOL v0.1): application to Mexican subduction earthquakes , 2019, Geoscientific Model Development.

[19]  Simon P. Wilson,et al.  Bayesian palaeoclimate reconstruction , 2006 .

[20]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Thomas F. Stocker,et al.  A Zonally Averaged, Coupled Ocean-Atmosphere Model for Paleoclimate Studies , 1992 .

[22]  Albert Lunde,et al.  A Paleoclimate Model of Northern Hemisphere Ice Sheets , 1981, Quaternary Research.

[23]  Daniel A. Contreras,et al.  From paleoclimate variables to prehistoric agriculture: Using a process-based agro-ecosystem model to simulate the impacts of Holocene climate change on potential agricultural productivity in Provence, France , 2019, Quaternary International.

[24]  R. McKitrick,et al.  Proxy inconsistency and other problems in millennial paleoclimate reconstructions , 2009, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[26]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[27]  R. Caballero,et al.  Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1 , 2018, Climate of the Past.

[28]  R. Müller,et al.  Global plate boundary evolution and kinematics since the late Paleozoic , 2016 .

[29]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[30]  L. Mysak,et al.  A Simple Coupled Atmosphere–Ocean–Sea Ice–Land Surface Model for Climate and Paleoclimate Studies* , 2000 .

[31]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[32]  Peter John Huybers,et al.  A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part I: Development and Applications to Paleoclimate Reconstruction Problems , 2010 .

[33]  D. Sahagian,et al.  Paleogeographic Interpretation: With an Example From the Mid-Cretaceous , 1985 .

[34]  E. Barron,et al.  A paleoclimate model for the North American Cretaceous (Cenomanian- Turonian) epicontinental sea , 1993 .

[35]  Scott Rutherford,et al.  Climate reconstruction using ‘Pseudoproxies’ , 2001 .

[36]  David B. Rowley,et al.  Coal, climate and terrestrial productivity: the present and early Cretaceous compared , 1987, Geological Society, London, Special Publications.

[37]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[38]  Rohitash Chandra,et al.  BayesReef: A Bayesian inference framework for modelling reef growth in response to environmental change and biological dynamics , 2018, Environ. Model. Softw..

[39]  C. K. Stidd Cube-root-normal precipitation distributions , 1953 .

[40]  R. Müller,et al.  Palaeolatitudinal distribution of lithologic indicators of climate in a palaeogeographic framework , 2018, Geological Magazine.

[41]  Gregory J. Hakim,et al.  Assimilation of Time-Averaged Pseudoproxies for Climate Reconstruction , 2014 .

[42]  D. Nychka,et al.  The Value of Multiproxy Reconstruction of Past Climate , 2010 .

[43]  M. Eby,et al.  Climate simulations of the Permian-Triassic boundary: Ocean acidification and the extinction event , 2011 .

[44]  L. Holmström,et al.  A Bayesian multinomial regression model for palaeoclimate reconstruction with time uncertainty , 2016 .

[45]  M. Huber,et al.  The middle-to-late Eocene greenhouse climate, modelled using the CESM 1.0.5 , 2020 .

[46]  Steven J. Phipps,et al.  Paleoclimate Data–Model Comparison and the Role of Climate Forcings over the Past 1500 Years* , 2013 .

[47]  Sally Cripps,et al.  Applying machine learning to criminology: semi-parametric spatial-demographic Bayesian regression , 2018, Security Informatics.

[48]  M. Patzkowsky,et al.  Application of the Fujita-Ziegler paleoclimate model: Early Permian and Late Cretaceous examples , 1991 .

[49]  A. P. Dawid,et al.  Regression and Classification Using Gaussian Process Priors , 2009 .

[50]  Thomas A. Rothfus,et al.  Tracing the tropics across land and sea: Permian to present , 2003 .

[51]  Rohitash Chandra,et al.  BayesLands: A Bayesian inference approach for parameter uncertainty quantification in Badlands , 2018, Comput. Geosci..

[52]  Gregory J. L. Tourte,et al.  The DeepMIP contribution to PMIP4 , 2017 .

[53]  Paul R. Martin,et al.  Impacts of climate warming on terrestrial ectotherms across latitude , 2008, Proceedings of the National Academy of Sciences.

[54]  P. Valdes,et al.  Mesozoic climates: General circulation models and the rock record , 2006 .

[55]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[56]  Richard McGehee,et al.  A Paleoclimate Model of Ice-Albedo Feedback Forced by Variations in Earth's Orbit , 2012, SIAM J. Appl. Dyn. Syst..

[57]  Makiko Sato,et al.  Paleoclimate Implications for Human-Made Climate Change , 2011, 1105.0968.