Based on preliminary findings from the FP7 project “MyCopter”, the paper assesses the presuppositions for and the potential implications of “personal air vehicles” as a future mobility service. A broad range of technology trajectories can be observed enabling new mobility options and services in future transport system (Wiesenthal et al. 2011). Usually, Information and Communication technologies (ICT) are playing a key-role in this context. Well in line with the objectives of sustainable transport there usually is a focus on making transport modes cleaner (Skinner et al. 2010), reducing mobility needs or enabling a modal shift to more efficient modes of transport (Banister 2008, CEC 2011). But the future is open and hardly predictable, even if there surely is a potential for governing also complex socio-technical systems such as a transport system in a desired direction. Nevertheless, it is always possible and should not be ignored that “surprises” emerge on the scene which have not been really anticipated by the majority of experts in the field. In an ex post analysis these development are reconstructed as “disruptive” innovations (Markides 2006). Prominent examples can be found in the ICT sector, with the extremely fast diffusion of personal computers and cell phones. To give an example from the transport sector: for long time it has not really been envisioned that the market penetration of e-mobility will make its first success story in the bicycle sector (Hurst 2013). “Disruptive” innovations are difficult to identify ex ante. However, foresight or “monitoring” activities are useful approaches to enable an early detection of such developments and to prepare for early measurers to support societal desirable innovation. Against this background, this paper will have a closer look at the potentials of personal air vehicles (PAV) to gain market shares in the transport sector. The paper to be presented is based on work carried out in context of the FP7 project “MyCopter” (www.mycopter.eu).1 The central idea of the project is to avoid the typical problems associated with ground-based transportation by using the third dimension, combining the best of ground-based and air-based transportation. The solution pursued in MyCopter is the creation of a personal air transport system (PATS) that can overcome the environmental and financial costs associated with current methods of transport. To enable this personal air transport system PAVs are envisioned for traveling between homes and workplaces. They should be flying at low altitude in urban environments. Such PAVs should be fully or partially autonomous without requiring ground-based air traffic control and operate outside controlled airspace. They should be designed in a way that allows for using battery based electric propulsion systems. The paper will illustrate how scenarios for a future integration of PAVs into the transport system could look like and discuss whether more attention needs to be put on developments in the PAV sector regarding the preparation of transportation scenarios and policies for the coming decades. According to the project specifications, the focus will be on commuting. Using examples from German cities (which are among the most congested cities in Europe (TomTom 2013) and where a financially strong group of potential “early adopters” can be expected) the paper assesses the presuppositions for and implications of a market penetration of PAVs. One scenario to be discussed will be offering air vehicles as a sort of taxi-like service, flying fully autonomous and carrying two people at maximum. But other scenarios will be outlined as well. Based on this work, it will be possible to provide a clearer picture on the advantages and disadvantages of PAVs – in particular with regard to potential impacts on sustainability.
[1]
Tobias Wiesenthal,et al.
Mapping innovation in the European transport sector. An assessment of R&D efforts and priorities, institutional capacities, drivers and barriers to innovation
,
2011
.
[2]
Hye Ryung Byon,et al.
High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode
,
2013,
Nature Communications.
[3]
Yukio Nishimura,et al.
URBAN TRANSPORT PROBLEMS IN ASIA: DISCUSSION..
,
1993
.
[4]
C. Markides.
Disruptive Innovation: In Need of Better Theory*
,
2006
.