QUENCHING AND ANISOTROPY OF HYDROMAGNETIC TURBULENT TRANSPORT

Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the $\alpha$ effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the {\it quenched} flows, we obtain for the quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows these quenching exponents become about 4, 1.5, and 2.3, respectively. For the $\alpha$ effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the $\bf \Omega \times \bf J$ effect nearly the same quenching exponent is obtained as for $\alpha$. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.

[1]  M. Miesch,et al.  PERSISTENT MAGNETIC WREATHS IN A RAPIDLY ROTATING SUN , 2010, 1011.2831.

[2]  A. Bykov,et al.  Microphysics of Cosmic Ray Driven Plasma Instabilities , 2013, 1304.7081.

[3]  Turbulent magnetic Prandtl number and magnetic diffusivity quenching from simulations , 2003, astro-ph/0302425.

[4]  J. Pelt,et al.  Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles , 2014, 1407.0984.

[5]  S. Jepps Numerical models of hydromagnetic dynamos , 1975, Journal of Fluid Mechanics.

[6]  A. Brandenburg,et al.  Magnetoconvection and dynamo coefficients: Dependence of the alpha-effect on rotation and magnetic field , 2001, astro-ph/0108274.

[7]  The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence , 2000, astro-ph/0006186.

[8]  Allan Sacha Brun,et al.  Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope , 2004 .

[9]  A. Brandenburg,et al.  Kinematic α-effect in isotropic turbulence simulations , 2007, 0711.3789.

[10]  A. Brandenburg,et al.  Alpha effect and turbulent diffusion from convection , 2008, 0812.1792.

[11]  D. Nandy,et al.  MAGNETIC QUENCHING OF TURBULENT DIFFUSIVITY: RECONCILING MIXING-LENGTH THEORY ESTIMATES WITH KINEMATIC DYNAMO MODELS OF THE SOLAR CYCLE , 2010, 1007.1262.

[12]  M. Rieutord,et al.  Magnetic structures in a dynamo simulation , 1996, Journal of Fluid Mechanics.

[13]  M. Dikpati,et al.  THE ROLE OF DIFFUSIVITY QUENCHING IN FLUX-TRANSPORT DYNAMO MODELS , 2009, 0906.3685.

[14]  J. McWilliams,et al.  Large-scale magnetic field generation by randomly forced shearing waves. , 2008, Physical review letters.

[15]  F. Krause,et al.  The Inverse Scattering Transformation and the Theory of Solitons. By W. ECKHAUS and A. VAN HARTEN. North-Holland, 1981. 222pp. $31.75. , 1982, Journal of Fluid Mechanics.

[16]  Matthias Rempel,et al.  Flux-Transport Dynamos with Lorentz Force Feedback on Differential Rotation and Meridional Flow: Saturation Mechanism and Torsional Oscillations , 2006, astro-ph/0604446.

[17]  N. Kleeorin,et al.  NEW SCALING FOR THE ALPHA EFFECT IN SLOWLY ROTATING TURBULENCE , 2012, 1208.5004.

[18]  F. Cattaneo,et al.  Nonlinear restrictions on dynamo action. [in magnetic fields of astrophysical objects , 1992 .

[19]  V. Pipin,et al.  Stellar dynamos with ${\Omega} \times J$ effect , 2008, 0811.4225.

[20]  P. Gilman,et al.  The influence of the Coriolis force on flux tubes rising through the solar convection zone , 1987 .

[21]  A. Kosovichev,et al.  THE SUBSURFACE-SHEAR-SHAPED SOLAR αΩ DYNAMO , 2010, 1011.4276.

[22]  U. Frisch,et al.  Strong MHD helical turbulence and the nonlinear dynamo effect , 1976, Journal of Fluid Mechanics.

[23]  P. Gilman Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II: Dynamos with cycles and strong feedbacks , 1983 .

[24]  E. Pino,et al.  Turbulent magnetic pumping in a Babcock-Leighton solar dynamo model , 2008, 0803.3466.

[25]  Paul Charbonneau,et al.  ON THE MODE OF DYNAMO ACTION IN A GLOBAL LARGE-EDDY SIMULATION OF SOLAR CONVECTION , 2011 .

[26]  A. Brandenburg,et al.  MEMORY EFFECTS IN TURBULENT TRANSPORT , 2008, 0811.2561.

[27]  M. Rheinhardt,et al.  ON THE MEAN-FIELD THEORY OF THE KARLSRUHE DYNAMO EXPERIMENT I. KINEMATIC THEORY , 2002 .

[28]  G. Roberts,et al.  Dynamo action of fluid motions with two-dimensional periodicity , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  A. Brandenburg,et al.  Mean-field dynamo action from delayed transport , 2014, 1401.5026.

[30]  A. Choudhuri,et al.  Solar activity forecast with a dynamo model , 2007, 0707.2258.

[31]  F. Cattaneo,et al.  Suppression of turbulent transport by a weak magnetic field , 1991 .

[32]  A. Brandenburg,et al.  TURBULENT DYNAMOS WITH SHEAR AND FRACTIONAL HELICITY , 2008, 0810.2298.

[33]  D. Nandy,et al.  TURBULENT PUMPING OF MAGNETIC FLUX REDUCES SOLAR CYCLE MEMORY AND THUS IMPACTS PREDICTABILITY OF THE SUN'S ACTIVITY , 2012, 1206.2106.

[34]  K. Subramanian,et al.  Kinetic and magnetic α-effects in non-linear dynamo theory , 2007, astro-ph/0701001.

[35]  A. Brun,et al.  Effects of turbulent pumping on stellar activity cycles , 2011, 1112.1321.

[36]  M. Miesch,et al.  THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE , 2010, 1109.0240.

[37]  P. J. Kapyla,et al.  LARGE-SCALE DYNAMOS IN RIGIDLY ROTATING TURBULENT CONVECTION , 2008, 0812.3958.

[38]  A. Choudhuri,et al.  The Waldmeier effect and the flux transport solar dynamo , 2010, 1008.0824.

[39]  A. Kosovichev,et al.  EFFECTS OF ANISOTROPIES IN TURBULENT MAGNETIC DIFFUSION IN MEAN-FIELD SOLAR DYNAMO MODELS , 2013, 1307.6651.

[40]  P. J. Kapyla,et al.  Large-scale dynamos in turbulent convection with shear , 2008, 0806.0375.

[41]  A. University,et al.  EFFECTS OF ENHANCED STRATIFICATION ON EQUATORWARD DYNAMO WAVE PROPAGATION , 2013, 1301.2595.

[42]  P. Kapyla,et al.  Solar dynamo models with α -effect and turbulent pumping from local 3D convection calculations , 2006, astro-ph/0606089.

[43]  Stockholm University,et al.  CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY , 2012, 1205.4719.

[44]  J. Toomre,et al.  Nonlinear compressible convection penetrating into stable layers and producing internal gravity waves , 1986 .

[45]  P. Gilman,et al.  Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell , 1981 .

[46]  M. Rheinhardt,et al.  Test-field method for mean-field coefficients with MHD background , 2010, 1004.0689.

[47]  D. Nandy,et al.  Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection- versus Diffusion-dominated Solar Convection Zones , 2007, 0709.1046.

[48]  A. Brandenburg,et al.  Scaling and intermittency in incoherent α–shear dynamo , 2011, 1107.2419.

[49]  E. Blackman,et al.  Dynamic Nonlinearity in Large-Scale Dynamos with Shear , 2002, astro-ph/0204497.

[50]  P. Charbonneau Dynamo Models of the Solar Cycle , 2005 .

[51]  M. Rheinhardt,et al.  Magnetic Diffusivity Tensor and Dynamo Effects in Rotating and Shearing Turbulence , 2007, 0710.4059.

[52]  K. Subramanian,et al.  Magnetic Quenching of α and Diffusivity Tensors in Helical Turbulence , 2008 .

[53]  P. J. Kapyla,et al.  The α effect with imposed and dynamo-generated magnetic fields , 2009, 0904.2773.

[54]  R. Tavakol,et al.  Alpha effect and diffusivity in helical turbulence with shear , 2008, 0806.1608.

[55]  Full-sphere simulations of a circulation-dominated solar dynamo: Exploring the parity issue , 2004, astro-ph/0405027.

[56]  D. Thompson,et al.  FERMI LARGE AREA TELESCOPE STUDY OF COSMIC RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS , 2012 .

[57]  G. Glatzmaier Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone , 1985 .

[58]  F. Auchère,et al.  Coronal Temperature Maps from Solar EUV Images: A Blind Source Separation Approach , 2012, 1203.0116.

[59]  An Incoherent α-Ω Dynamo in Accretion Disks , 1995, astro-ph/9510038.

[60]  B. B. Karak IMPORTANCE OF MERIDIONAL CIRCULATION IN FLUX TRANSPORT DYNAMO: THE POSSIBILITY OF A MAUNDER-LIKE GRAND MINIMUM , 2010, 1009.2479.

[61]  A. Choudhuri,et al.  Origin of grand minima in sunspot cycles. , 2012, Physical review letters.

[62]  Abhijit Bhausaheb Bendre,et al.  On the magnetic quenching of mean-field effects in supersonic interstellar turbulence , 2012, 1210.2928.

[63]  H. K. Moffatt An approach to a dynamic theory of dynamo action in a rotating conducting fluid , 1972, Journal of Fluid Mechanics.

[64]  E. Parker Hydromagnetic Dynamo Models , 1955 .

[65]  N. Kleeorin,et al.  COSMIC-RAY CURRENT-DRIVEN TURBULENCE AND MEAN-FIELD DYNAMO EFFECT , 2012, 1204.4246.

[66]  A. Brandenburg,et al.  Scale dependence of alpha effect and turbulent diffusivity , 2008, 0801.1320.