Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors

Abstract. All-sky direct aerosol radiative effects (DARE) play a significant yet still uncertain role in climate. This is partly due to poorly quantified radiative properties of aerosol above clouds (AAC). We compute global estimates of shortwave top-of-atmosphere DARE over opaque water clouds (OWCs), DAREOWC, using observation-based aerosol and cloud radiative properties from a combination of A-Train satellite sensors and a radiative transfer model. There are three major differences between our DAREOWC calculations and previous studies: (1) we use the depolarization ratio method (DR) on CALIOP (Cloud–Aerosol Lidar with Orthogonal Polarization) Level 1 measurements to compute the AAC frequencies of occurrence and the AAC aerosol optical depths (AODs), thus introducing fewer uncertainties compared to using the CALIOP standard product; (2) we apply our calculations globally, instead of focusing exclusively on regional AAC “hotspots” such as the southeast Atlantic; and (3) instead of the traditional look-up table approach, we use a combination of satellite-based sensors to obtain AAC intensive radiative properties. Our results agree with previous findings on the dominant locations of AAC (south and northeast Pacific, tropical and southeast Atlantic, northern Indian Ocean and northwest Pacific), the season of maximum occurrence and aerosol optical depths (a majority in the 0.01–0.02 range and that can exceed 0.2 at 532 nm) across the globe. We find positive averages of global seasonal DAREOWC between 0.13 and 0.26 W m−2 (i.e., a warming effect on climate). Regional seasonal DAREOWC values range from −0.06 W m−2 in the Indian Ocean offshore from western Australia (in March–April–May) to 2.87 W m−2 in the southeast Atlantic (in September–October–November). High positive values are usually paired with high aerosol optical depths (>0.1) and low single scattering albedos (<0.94), representative of, for example, biomass burning aerosols. Because we use different spatial domains, temporal periods, satellite sensors, detection methods and/or associated uncertainties, the DAREOWC estimates in this study are not directly comparable to previous peer-reviewed results. Despite these differences, we emphasize that the DAREOWC estimates derived in this study are generally higher than previously reported. The primary reasons for our higher estimates are (i) the possible underestimate of the number of dust-dominated AAC cases in our study; (ii) our use of Level 1 CALIOP products (instead of CALIOP Level 2 products in previous studies) for the detection and quantification of AAC aerosol optical depths, which leads to larger estimates of AOD above OWC; and (iii) our use of gridded 4∘×5∘ seasonal means of aerosol and cloud properties in our DAREOWC calculations instead of simultaneously derived aerosol and cloud properties from a combination of A-Train satellite sensors. Each of these areas is explored in depth with detailed discussions that explain both the rationale for our specific approach and the subsequent ramifications for our DARE calculations.

[1]  D. Winker,et al.  On the Limits of CALIOP for Constraining Modeled Free Tropospheric Aerosol , 2018, Geophysical Research Letters.

[2]  G. Mace,et al.  Clouds over the Southern Ocean as Observed from the R/V Investigator during CAPRICORN. Part I: Cloud Occurrence and Phase Partitioning , 2018, Journal of Applied Meteorology and Climatology.

[3]  Anne Garnier,et al.  Extinction and optical depth retrievals for CALIPSO's Version 4 data release , 2018, Atmospheric Measurement Techniques.

[4]  R. Wood,et al.  Deeper, Precipitating PBLs Associated With Optically Thin Veil Clouds in the Sc‐Cu Transition , 2018, Geophysical Research Letters.

[5]  Jianglong Zhang,et al.  Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products. , 2017, Atmospheric measurement techniques.

[6]  Qiang Fu,et al.  The impact of lidar detection sensitivity on assessing aerosol direct radiative effects , 2017 .

[7]  M. Vaughan,et al.  Use of A-Train Aerosol Observations to Constrain Direct Aerosol Radiative Effects (DARE) Comparisons with Aerocom Models and Uncertainty Assessments , 2017 .

[8]  S. Christopher,et al.  The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds , 2017 .

[9]  D. Tanré,et al.  Consistency of aerosols above clouds characterization from A-Train active and passive measurements , 2017 .

[10]  H. Chepfer,et al.  Direct atmosphere opacity observations from CALIPSO provide new constraints on cloud‐radiation interactions , 2017 .

[11]  Zhaoyan Liu,et al.  Quantifying the low bias of CALIPSO's column aerosol optical depth due to undetected aerosol layers , 2017, Journal of geophysical research. Atmospheres : JGR.

[12]  J. Roujean,et al.  On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data , 2016 .

[13]  P. Formenti,et al.  Smoke and Clouds above the Southeast Atlantic: Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate , 2016 .

[14]  Beat Schmid,et al.  Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies , 2016 .

[15]  Ian Chang,et al.  Identifying Absorbing Aerosols Above Clouds From the Spinning Enhanced Visible and Infrared Imager Coupled With NASA A-Train Multiple Sensors , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[16]  J. Reid,et al.  Investigating the frequency and interannual variability in global above-cloud aerosol characteristics with CALIOP and OMI , 2016 .

[17]  M. Komppula,et al.  Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements , 2015 .

[18]  Arve Kylling,et al.  The libRadtran software package for radiative transfer calculations (version 2.0.1) , 2015 .

[19]  Steven Platnick,et al.  Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations , 2015 .

[20]  Qiang Fu,et al.  CALIPSO‐inferred aerosol direct radiative effects: Bias estimates using ground‐based Raman lidars , 2015 .

[21]  S. Christopher,et al.  Measurement‐based estimates of direct radiative effects of absorbing aerosols above clouds , 2015 .

[22]  Steven Platnick,et al.  Simultaneously inferring above‐cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS , 2015 .

[23]  J. Kay,et al.  The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active Observations and the Community Earth System Model , 2015 .

[24]  J. Kar,et al.  Evaluation of CALIOP 532 nm aerosol optical depth over opaque water clouds , 2015 .

[25]  L. G. Tilstra,et al.  Aerosol direct radiative effect of smoke over clouds over the southeast Atlantic Ocean from 2006 to 2009 , 2014 .

[26]  D. Tanré,et al.  Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their direct radiative effect , 2014 .

[27]  E. Swietlicki,et al.  Cloud droplet activity changes of soot aerosol upon smog chamber ageing , 2014 .

[28]  Min Min,et al.  On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing , 2014 .

[29]  H. Chepfer,et al.  Effects of solar activity on noise in CALIOP profiles above the South Atlantic Anomaly , 2014 .

[30]  Jianglong Zhang,et al.  Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS , 2014 .

[31]  Brian Cairns,et al.  Optics of water cloud droplets mixed with black-carbon aerosols. , 2014, Optics letters.

[32]  Jens Redemann,et al.  An evaluation of CALIOP/CALIPSO's aerosol‐above‐cloud detection and retrieval capability over North America , 2014 .

[33]  K. Dawson,et al.  A New Study of Sea Spray Optical Properties from Multi-Sensor Spaceborne Observations , 2014 .

[34]  O. Torres,et al.  How do A‐train sensors intercompare in the retrieval of above‐cloud aerosol optical depth? A case study‐based assessment , 2013 .

[35]  D. Tanré,et al.  Global analysis of aerosol properties above clouds , 2013 .

[36]  Zhibo Zhang,et al.  A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data , 2013 .

[37]  T. Nakajima,et al.  Validation and empirical correction of MODIS AOT and AE over ocean , 2013 .

[38]  A. Ansmann,et al.  Low Arabian dust extinction‐to‐backscatter ratio , 2013 .

[39]  F. Bréon Aerosol extinction-to-backscatter ratio derived from passive satellite measurements , 2013 .

[40]  F. Bréon,et al.  Satellite-based estimate of aerosol direct radiative effect over the South-East Atlantic , 2013 .

[41]  Alexander Smirnov,et al.  Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect , 2013 .

[42]  S. Howell,et al.  Ultrafine sea spray aerosol over the southeastern Pacific: open-ocean contributions to marine boundary layer CCN , 2013 .

[43]  E. Kassianov,et al.  Do diurnal aerosol changes affect daily average radiative forcing? , 2013 .

[44]  D. Barber,et al.  A Validation of CloudSat and CALIPSO's Temperature, Humidity, Cloud Detection, and Cloud Base Height over the Arctic Marine Cryosphere , 2013 .

[45]  Zhibo Zhang,et al.  New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing , 2013 .

[46]  Steven Platnick,et al.  Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP , 2013 .

[47]  T. Nakajima,et al.  A study of the shortwave direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation , 2013 .

[48]  Lorraine Remer,et al.  A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[49]  W. Paul Menzel,et al.  Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[50]  D. Winker,et al.  On the nature and extent of optically thin marine low clouds , 2012 .

[51]  Steven Platnick,et al.  Effects of Cloud Horizontal Inhomogeneity and Drizzle on Remote Sensing of Cloud Droplet Effective Radius: Case Studies Based on Large-eddy Simulations , 2012 .

[52]  D. Tanré,et al.  Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements , 2012 .

[53]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[54]  Zhaoyan Liu,et al.  An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements , 2012 .

[55]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[56]  Piet Stammes,et al.  Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry , 2012 .

[57]  Hiren Jethva,et al.  Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies , 2012 .

[58]  Stephen A. Klein,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels , 2012 .

[59]  Qiang Fu,et al.  Comparison of the CALIPSO satellite and ground‐based observations of cirrus clouds at the ARM TWP sites , 2011 .

[60]  M. Vaughan,et al.  Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties , 2011 .

[61]  J. Redemann,et al.  Horizontal variability of aerosol optical depth observed during the ARCTAS airborne experiment , 2011 .

[62]  Jens Redemann,et al.  The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth , 2011 .

[63]  Claudia Emde,et al.  New secondary-scattering correction in DISORT with increased efficiency for forward scattering , 2011 .

[64]  Eric M. Wilcox,et al.  Direct and semi-direct radiative forcing of smoke aerosols over clouds , 2011 .

[65]  Steven Platnick,et al.  An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands , 2011 .

[66]  Soon-Chang Yoon,et al.  Intercomparisons of cloud-top and cloud-base heights from ground-based Lidar, CloudSat and CALIPSO measurements , 2011 .

[67]  B. Anderson,et al.  Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA , 2010 .

[68]  David M. Winker,et al.  Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar , 2010 .

[69]  R. Wood,et al.  Source attribution of climatically important aerosol properties measured at Paposo (Chile) during VOCALS , 2010 .

[70]  T. Bond,et al.  How much can the vertical distribution of black carbon affect its global direct radiative forcing? , 2010 .

[71]  M. Thomas,et al.  A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data , 2010 .

[72]  Steven Platnick,et al.  A global view of one‐dimensional solar radiative transfer through oceanic water clouds , 2010 .

[73]  Zhaoyan Liu,et al.  On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP's 1064 nm calibration assumptions using cloud physics lidar measurements , 2010 .

[74]  K. Stamnes,et al.  CALIPSO/CALIOP Cloud Phase Discrimination Algorithm , 2009 .

[75]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[76]  R. Mitchell,et al.  Recent increase in aerosol loading over the Australian arid zone , 2009 .

[77]  N. Bellouin,et al.  Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean , 2009 .

[78]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[79]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[80]  David M. Winker,et al.  CALIPSO Lidar Calibration Algorithms. Part I: Nighttime 532-nm Parallel Channel and 532-nm Perpendicular Channel , 2009 .

[81]  Didier Tanré,et al.  Aerosol Remote Sensing over Clouds Using A-Train Observations , 2009 .

[82]  D. Winker,et al.  CALIPSO Lidar Description and Performance Assessment , 2009 .

[83]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[84]  A. Marshak,et al.  MODIS observations of enhanced clear sky reflectance near clouds , 2009 .

[85]  Robert Wood,et al.  Satellite-derived direct radiative effect of aerosols dependent on cloud cover , 2009 .

[86]  D. Winker,et al.  A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements , 2008 .

[87]  Zhaoyan Liu,et al.  Quantifying above‐cloud aerosol using spaceborne lidar for improved understanding of cloudy‐sky direct climate forcing , 2008 .

[88]  David M. Winker,et al.  Airborne validation of spatial properties measured by the CALIPSO lidar , 2007 .

[89]  Zhaoyan Liu,et al.  Retrieving Optical Depths and Lidar Ratios for Transparent Layers Above Opaque Water Clouds From CALIPSO Lidar Measurements , 2007, IEEE Geoscience and Remote Sensing Letters.

[90]  Robert F. Cahalan,et al.  The Plane-parallel Albedo Bias of Liquid Clouds from MODIS Observations , 2007 .

[91]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[92]  Robert F. Cahalan,et al.  3‐D aerosol‐cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields , 2007 .

[93]  M. Perrone,et al.  AERONET versus MODIS aerosol parameters at different spatial resolutions over southeast Italy , 2007 .

[94]  Zhaoyan Liu,et al.  The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory. , 2007, Optics express.

[95]  T. Kovacs Comparing MODIS and AERONET aerosol optical depth at varying separation distances to assess ground‐based validation strategies for spaceborne lidar , 2006 .

[96]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[97]  V. Ramanathan,et al.  Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations , 2005 .

[98]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[99]  Brent N. Holben,et al.  An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products , 2005 .

[100]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[101]  E. O'connor,et al.  A Technique for Autocalibration of Cloud Lidar , 2004 .

[102]  P. Formenti,et al.  Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum , 2003 .

[103]  Joyce E. Penner,et al.  Soot and smoke aerosol may not warm climate , 2002 .

[104]  U. Lohmann,et al.  The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE , 2002 .

[105]  Zhaoyan Liu,et al.  Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. , 2002, Applied optics.

[106]  François-Marie Bréon,et al.  Global distribution of cloud droplet effective radius from POLDER polarization measurements , 2000 .

[107]  S. Young,et al.  Springtime aerosol layers in the free troposphere over Australia: Mildura Aerosol Tropospheric Experiment (MATE 98) , 2000 .

[108]  Irina N. Sokolik,et al.  Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions , 2000 .

[109]  Itamar M. Lensky,et al.  Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds , 1998 .

[110]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[111]  V. Ramaswamy,et al.  Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols , 1998 .

[112]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[113]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[114]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[115]  Q. Fu,et al.  On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres , 1992 .

[116]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[117]  Ronald G. Pinnick,et al.  Backscatter and extinction in water clouds , 1981 .

[118]  M. McCormick,et al.  Methodology for error analysis and simulation of lidar aerosol measurements. , 1979, Applied optics.

[119]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[120]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[121]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[122]  Francesc Rocadenbosch,et al.  Climatology of the Aerosol Extinction-to-Backscatter Ratio from Sun-Photometric Measurements , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[123]  D. Winker,et al.  THE CALIPSO CLOUD AND AEROSOL DISCRIMINATION : VERSION 3 ALGORITHM AND TEST RESULTS , 2010 .

[124]  Mian Chin,et al.  Atmospheric Aerosol Properties and Climate Impacts , 2009 .

[125]  V. Noel,et al.  A SIMPLE MULTIPLE SCATTERING – DEPOLARIZATION RELATION OF WATER CLOUDS AND ITS POTENTIAL APPLICATIONS , 2006 .

[126]  K. Powell,et al.  SIMULATION OF RANDOM ELECTRON MULTIPLICATION IN CALIPSO LIDAR PHOTOMULTIPLIERS , 2006 .

[127]  K. Powell The Development of the CALIPSO LiDAR Simulator , 2005 .

[128]  Pamela L. Eddy COLLEGE ' OF WILLIAM AND MARY , 2004 .

[129]  David M. Winker,et al.  Mesoscale Variations of Tropospheric Aerosols , 2003 .

[130]  P. Chylek,et al.  Enhanced Absorption of Solar Radiation By Cloud Droplets Containing Soot Particles In Their Surface , 1992 .