Chemoinformatics

Drug design is the most complex and at the same time most important objective of chemoinformatics. Accordingly, we can interpret a formation of chemoinformatics as an answer to a fascination of the potential but also to the disappointment of computer assisted drug design in early 90′. Computers should be taught the essentials of chemistry to be intelligent and flexible enough to adopt the uncertainty of fuzzy in vitro molecular data. A new drug additionally to its in vivo advantages should also win the market. This decides the scope is broad here, extending from physics to economy.

[1]  O. Pytela,et al.  Chemometrical Analysis of Substituent Effects. III. Additivity of Substituent Effects in Dissociation of 3,4-Disubstituted Benzoic Acids in Organic Solvents , 1994 .

[2]  Janusz Leon Wisniewski Chemical Nomenclature and Structure Representation: Algorithmic Generation and Conversion , 2008 .

[3]  Andrew R. Leach,et al.  An Introduction to Chemoinformatics , 2003 .

[4]  Jaroslaw Polanski,et al.  Modeling Robust QSAR , 2006, J. Chem. Inf. Model..

[5]  M. Fiałkowski,et al.  Architecture and evolution of organic chemistry. , 2005, Angewandte Chemie.

[6]  Paul D. Leeson,et al.  The influence of the 'organizational factor' on compound quality in drug discovery , 2011, Nature Reviews Drug Discovery.

[7]  John Hodgson,et al.  ADMET—turning chemicals into drugs , 2001, Nature Biotechnology.

[8]  F. Brown Chapter 35 – Chemoinformatics: What is it and How does it Impact Drug Discovery. , 1998 .

[9]  D. Swinney,et al.  How were new medicines discovered? , 2011, Nature Reviews Drug Discovery.

[10]  Martin Ester,et al.  Knowledge Discovery in Databases - Techniken und Anwendungen , 2000 .

[11]  W. A. Smit,et al.  Organic synthesis : the science behind the art , 1998 .

[12]  Jarostaw Polanski,et al.  Molecular Shape Analysis , 2008 .

[13]  Hugo Kubinyi,et al.  Privileged Structures and Analogue‐Based Drug Discovery , 2006 .

[14]  Dragos Horvath,et al.  Strengths and Limitations of Pharmacophore‐Based Virtual Screening , 2005 .

[15]  Matthew H Todd,et al.  Computer-aided organic synthesis. , 2005, Chemical Society reviews.

[16]  Svante Wold,et al.  Chemometrics; what do we mean with it, and what do we want from it? , 1995 .

[17]  Alexander Golbraikh,et al.  Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. , 2004, Journal of medicinal chemistry.

[18]  Jerry March,et al.  Advanced Organic Chemistry: Reactions, Mechanisms, and Structure , 1977 .

[19]  P. Scott,et al.  Radiosyntheses using fluorine-18: the art and science of late stage fluorination. , 2014, Current topics in medicinal chemistry.

[20]  Martin A. Ott,et al.  Cheminformatics and Organic Chemistry. Computer-Assisted Synthetic Analysis , 2004 .

[21]  W. Guida,et al.  The art and practice of structure‐based drug design: A molecular modeling perspective , 1996, Medicinal research reviews.

[22]  Bernadette Bensaude‐Vincent,et al.  Chemistry: The Impure Science , 2009 .

[23]  J. Gasteiger,et al.  FROM ATOMS AND BONDS TO THREE-DIMENSIONAL ATOMIC COORDINATES : AUTOMATIC MODEL BUILDERS , 1993 .

[24]  S. Schweitzer Pharmaceutical Economics and Policy , 1997 .

[25]  A. Hopkins,et al.  The role of ligand efficiency metrics in drug discovery , 2014, Nature Reviews Drug Discovery.

[26]  D. Fattori,et al.  Molecular recognition: the fragment approach in lead generation. , 2004, Drug discovery today.

[27]  Andrew M Davis,et al.  Predictive ADMET studies, the challenges and the opportunities. , 2004, Current opinion in chemical biology.

[28]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[29]  Tudor I. Oprea,et al.  Chemoinformatics and the Quest for Leads in Drug Discovery , 2008 .

[30]  Jonathan M. Goodman,et al.  Chemical Applications of Molecular Modeling , 1998 .

[31]  Lorenz C. Blum,et al.  Chemical space as a source for new drugs , 2010 .

[32]  Sam Motherwell Cheminformatics and Crystallography. The Cambridge Structural Database , 2004 .

[33]  Jaroslaw Polanski,et al.  Receptor dependent multidimensional QSAR for modeling drug--receptor interactions. , 2009, Current medicinal chemistry.

[34]  J. Scannell,et al.  Diagnosing the decline in pharmaceutical R&D efficiency , 2012, Nature Reviews Drug Discovery.

[35]  Christoph Steinbeck,et al.  Chemical ontologies: what are they, what are they for and what are the challenges , 2011, J. Cheminformatics.

[36]  Tudor I. Oprea Current trends in lead discovery: Are we looking for the appropriate properties? , 2002, J. Comput. Aided Mol. Des..

[37]  M. Evers,et al.  The Role of Big Data and Advanced Analytics in Drug Discovery, Development, and Commercialization , 2014, Clinical pharmacology and therapeutics.

[38]  Gregory Bock,et al.  'In silico' simulation of biological processes , 2002 .

[39]  B. W. Wright,et al.  A comprehensive two-dimensional retention time alignment algorithm to enhance chemometric analysis of comprehensive two-dimensional separation data. , 2005, Analytical chemistry.

[40]  B. R. Kowalski,et al.  Solving chemical problems with pattern recognition , 2004, Naturwissenschaften.

[41]  Stu Borman Drugs by design , 2005 .

[42]  J. V. Julián-Ortiz,et al.  Virtual darwinian drug design: QSAR inverse problem, virtual combinatorial chemistry, and computational screening. , 2001 .

[43]  Jürgen Brickmann,et al.  Computer visualization of molecular models : tools for man-machine communication in molecular science , 2003 .

[44]  Timo Böhme,et al.  Automated compound classification using a chemical ontology , 2012, Journal of Cheminformatics.

[45]  S. White,et al.  Recent advances in computer-aided drug design as applied to anti-influenza drug discovery. , 2014, Current topics in medicinal chemistry.

[46]  Alan Hinchliffe,et al.  Molecular Modelling for Beginners , 2003 .

[47]  Luc De Raedt,et al.  The molecular feature miner MolFea , 2003 .

[48]  Jerry March,et al.  March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure , 2001 .

[49]  Marc C. Nicklaus,et al.  Pharmacophore and Drug Discovery , 2008 .

[50]  J. Fuhrhop,et al.  Organic synthesis: Concepts, methods, starting materials , 1994 .

[51]  Gisbert Schneider,et al.  Computer-based de novo design of drug-like molecules , 2005, Nature Reviews Drug Discovery.

[52]  A. Berry From Classical to Modern Chemistry , 1974 .

[53]  J. Gasteiger,et al.  Chemoinformatics: A Textbook , 2003 .

[54]  I. Kolossvary,et al.  Molecular mechanics and conformational analysis in drug design , 2013 .

[55]  A. Hopkins,et al.  Navigating chemical space for biology and medicine , 2004, Nature.

[56]  Federico Gago,et al.  Chemometrical identification of mutations in HIV-1 reverse transcriptase conferring resistance or enhanced sensitivity to arylsulfonylbenzonitriles. , 2004, Journal of the American Chemical Society.

[57]  Christoph Steinbeck,et al.  Computer-Assisted Structure Elucidation , 2003 .

[58]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[59]  Lingran Chen,et al.  Reaction Classification and Knowledge Acquisition , 2008 .

[60]  Computational chemistry: Docking on trial , 2005, Nature Reviews Drug Discovery.

[61]  Pierre Audibert Mathematics for Informatics and Computer Science , 2010 .

[62]  J. Dearden,et al.  QSAR modeling: where have you been? Where are you going to? , 2014, Journal of medicinal chemistry.

[63]  E. Corey,et al.  The Logic of Chemical Synthesis , 1989 .

[64]  Stu Borman DRUGS BY DESIGN: With little fanfare, structure-based drug design is filling development pipelines , 2005 .

[65]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[66]  Nikolay Kochev,et al.  Searching Chemical Structures , 2004, Chemoinformatics.

[67]  W. Graham Richards,et al.  Virtual screening using grid computing: the screensaver project , 2002, Nature Reviews Drug Discovery.

[68]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[69]  A. Leo,et al.  Chem-bioinformatics: comparative QSAR at the interface between chemistry and biology. , 2002, Chemical reviews.

[70]  J. Gasteiger,et al.  Knowledge Discovery in Reaction Databases: Landscaping Organic Reactions by a Self-Organizing Neural Network , 1997 .

[71]  David Weininger SMILES‐A Language for Molecules and Reactions , 2008 .

[72]  Bingcheng Wang,et al.  Chemometrical Classification of Ephrin Ligands and Eph Kinases Using GRID/CPCA Approach , 2003, J. Chem. Inf. Comput. Sci..

[73]  W. H. Brock,et al.  The Fontana History of Chemistry , 1992 .

[74]  M. Meringer,et al.  How many organic compounds are graph-theoretically nonplanar? , 2002 .

[75]  I. Stewart,et al.  The collapse of chaos : discovering simplicity in a complex world , 1995 .

[76]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[77]  Tudor I. Oprea,et al.  3D QSAR Modeling in Drug Design , 2003 .

[78]  Michael Banck,et al.  Packaging free software chemistry programs in Debian GNU/Linux: past, present and future , 2012, Journal of Cheminformatics.

[79]  Pierre Baldi,et al.  Chemoinformatics, drug design, and systems biology. , 2005, Genome informatics. International Conference on Genome Informatics.

[80]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[81]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .