Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations

[1]  Scott J. Litzelman,et al.  Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries , 2022, Nature Energy.

[2]  Hongli Zhu,et al.  Stable Li Metal Anode Enabled by Space Confinement and Uniform Curvature through Lithiophilic Nanotube Arrays , 2019, Advanced Energy Materials.

[3]  Yiyu Feng,et al.  A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries , 2019, Energy Storage Materials.

[4]  Hongli Zhu,et al.  Lignin‐Derived Holey, Layered, and Thermally Conductive 3D Scaffold for Lithium Dendrite Suppression , 2019, Small Methods.

[5]  P. Qi,et al.  A High‐Throughput Search for Functionally Stable Interfaces in Sulfide Solid‐State Lithium Ion Conductors , 2019, Advanced Energy Materials.

[6]  Luyi Yang,et al.  Revealing the Short‐Circuiting Mechanism of Garnet‐Based Solid‐State Electrolyte , 2019, Advanced Energy Materials.

[7]  Qiang Zhang,et al.  Intercalated Electrolyte with High Transference Number for Dendrite‐Free Solid‐State Lithium Batteries , 2019, Advanced Functional Materials.

[8]  Jiayan Luo,et al.  Mixed Ion and Electron‐Conducting Scaffolds for High‐Rate Lithium Metal Anodes , 2019, Advanced Energy Materials.

[9]  Xiaofei Yang,et al.  Rational Design of Hierarchical “Ceramic‐in‐Polymer” and “Polymer‐in‐Ceramic” Electrolytes for Dendrite‐Free Solid‐State Batteries , 2019, Advanced Energy Materials.

[10]  F. La Mantia,et al.  Space-Charge Effects at the Li7La3Zr2O12/Poly(ethylene oxide) Interface. , 2019, ACS applied materials & interfaces.

[11]  Xiaolin Xie,et al.  UV-curable boron nitride nanosheet/ionic liquid-based crosslinked composite polymer electrolyte in lithium metal batteries , 2019, Journal of Power Sources.

[12]  Hongli Zhu,et al.  3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose , 2019, Advanced materials.

[13]  Shizhao Xiong,et al.  Novel synergistic coupling composite chelating copolymer/LAGP solid electrolyte with optimized interface for dendrite-free solid Li-metal battery , 2019, Electrochimica Acta.

[14]  Ya‐Xia Yin,et al.  Viscoelastic and Nonflammable Interface Design–Enabled Dendrite‐Free and Safe Solid Lithium Metal Batteries , 2019, Advanced Energy Materials.

[15]  A. Westover,et al.  Deposition and Confinement of Li Metal along an Artificial Lipon–Lipon Interface , 2019, ACS Energy Letters.

[16]  C. Nan,et al.  Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries , 2019, Energy Storage Materials.

[17]  Francisco Javier Quintero Cortes,et al.  Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure , 2019, ACS Energy Letters.

[18]  Yang Shen,et al.  Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes , 2019, Advanced materials.

[19]  Adelaide M. Nolan,et al.  Lithium–Graphite Paste: An Interface Compatible Anode for Solid‐State Batteries , 2019, Advanced materials.

[20]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[21]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[22]  Yanyan Liu,et al.  All-in-one improvement toward Li6PS5Br-Based solid electrolytes triggered by compositional tune , 2019, Journal of Power Sources.

[23]  Jian-Fang Wu,et al.  In Situ Formed Shields Enabling Li2CO3-Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries. , 2018, ACS applied materials & interfaces.

[24]  Dana B. Sulas,et al.  Toward All-Solid-State Lithium Batteries: Three-Dimensional Visualization of Lithium Migration in β-Li3PS4 Ceramic Electrolyte , 2018 .

[25]  David G. Mackanic,et al.  Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries , 2018, Materials Today Nano.

[26]  Shaofei Wang,et al.  Polymer lithium-garnet interphase for an all-solid-state rechargeable battery , 2018, Nano Energy.

[27]  Kun Fu,et al.  All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture , 2018, Energy Storage Materials.

[28]  Xiaoting Lin,et al.  Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition , 2018, Nano Energy.

[29]  Xiulin Fan,et al.  Interface engineering of sulfide electrolytes for all-solid-state lithium batteries , 2018, Nano Energy.

[30]  Rui Zhang,et al.  An ion redistributor for dendrite-free lithium metal anodes , 2018, Science Advances.

[31]  Henghui Xu,et al.  Li3N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C. , 2018, Nano letters.

[32]  Li-Min Wang,et al.  Interface-Engineered Li7 La3 Zr2 O12 -Based Garnet Solid Electrolytes with Suppressed Li-Dendrite Formation and Enhanced Electrochemical Performance. , 2018, ChemSusChem.

[33]  A. Aguadero,et al.  Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes , 2018 .

[34]  Donald J. Siegel,et al.  Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes. , 2018, ACS applied materials & interfaces.

[35]  Rui Zhang,et al.  An Armored Mixed Conductor Interphase on a Dendrite‐Free Lithium‐Metal Anode , 2018, Advanced materials.

[36]  T. Mallouk,et al.  Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10 GeP2 S12 Solid Electrolyte Interface. , 2018, Angewandte Chemie.

[37]  Yantao Zhang,et al.  Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes , 2018, Joule.

[38]  Yan‐Bing He,et al.  Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries , 2018, Energy Storage Materials.

[39]  Jie Xiao,et al.  The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries , 2018 .

[40]  Yang Shen,et al.  Lithium-Salt-Rich PEO/Li0.3La0.557TiO3 Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. , 2018, ACS applied materials & interfaces.

[41]  J. Akimoto,et al.  Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application , 2018, Scientific Reports.

[42]  Y. Qi,et al.  Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites , 2018, Journal of Power Sources.

[43]  F. Ding,et al.  Conformation of lithium-aluminium alloy interphase-layer on lithium metal anode used for solid state batteries , 2018, Electrochimica Acta.

[44]  Jiayan Luo,et al.  Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets , 2018, Advanced Energy Materials.

[45]  Yayuan Liu,et al.  A Silica‐Aerogel‐Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus , 2018, Advanced materials.

[46]  Hongli Zhu,et al.  Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility , 2018, Advanced materials.

[47]  Chunsheng Wang,et al.  Suppressing Li Dendrite Formation in Li2S‐P2S5 Solid Electrolyte by LiI Incorporation , 2018 .

[48]  Qiang Zhang,et al.  Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes , 2018, ACS Energy Letters.

[49]  L. Ci,et al.  Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. , 2018, ACS applied materials & interfaces.

[50]  Yayuan Liu,et al.  Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. , 2018, Nano letters.

[51]  Donald J. Siegel,et al.  Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review , 2018, Ionics.

[52]  Xi Chen,et al.  Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. , 2018, Journal of the American Chemical Society.

[53]  J. Grossman,et al.  Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes , 2018, ACS central science.

[54]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[55]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[56]  Xianghui Xiao,et al.  Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography , 2018 .

[57]  Li-zhen Fan,et al.  3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. , 2018, ACS applied materials & interfaces.

[58]  B. Ding,et al.  Mixed Ionic and Electronic Conductor for Li‐Metal Anode Protection , 2018, Advanced materials.

[59]  Shaofei Wang,et al.  Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. , 2018, Journal of the American Chemical Society.

[60]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[61]  L. M. Rodriguez-Martinez,et al.  Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries. , 2017, Angewandte Chemie.

[62]  Donald J. Siegel,et al.  Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2017 .

[63]  Luyi Yang,et al.  Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li–Electrolyte Interface for Solid State Lithium‐Ion Batteries , 2017 .

[64]  H. Chung,et al.  Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell , 2017 .

[65]  Rui Zhang,et al.  An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes , 2017, Proceedings of the National Academy of Sciences.

[66]  Yayuan Liu,et al.  Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries , 2017, Science Advances.

[67]  Yunhui Gong,et al.  In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries. , 2017, Journal of the American Chemical Society.

[68]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[69]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[70]  Ru‐Shi Liu,et al.  Voltammetric Enhancement of Li-Ion Conduction in Al-Doped Li7–xLa3Zr2O12 Solid Electrolyte , 2017 .

[71]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[72]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[73]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[74]  W. Yoon,et al.  Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries. , 2017, ChemSusChem.

[75]  J. Sakamoto,et al.  Effect of Processing Conditions of 75Li2S-25P2S5 Solid Electrolyte on its DC Electrochemical Behavior , 2017 .

[76]  Martin Winter,et al.  Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density , 2017, Journal of Solid State Electrochemistry.

[77]  T. Leichtweiss,et al.  Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[78]  Boyang Liu,et al.  Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode , 2017, Nano Research.

[79]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[80]  F. Ding,et al.  Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[81]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[82]  Jian-jun Zhang,et al.  High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery , 2017 .

[83]  R. Raj,et al.  Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries , 2017 .

[84]  Lucienne Buannic,et al.  Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. , 2017, ACS applied materials & interfaces.

[85]  Ya‐Xia Yin,et al.  Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. , 2016, Journal of the American Chemical Society.

[86]  Xi Chen,et al.  Mastering the interface for advanced all-solid-state lithium rechargeable batteries , 2016, Proceedings of the National Academy of Sciences.

[87]  V. Ferguson,et al.  Multi-Scale Mechanical Behavior of the Li3PS4 Solid-Phase Electrolyte. , 2016, ACS applied materials & interfaces.

[88]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[89]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7La3Zr2O12‐Polyethylene Oxide Composite Electrolytes , 2016 .

[90]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. , 2016, Angewandte Chemie.

[91]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[92]  Eongyu Yi,et al.  Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO) , 2016 .

[93]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[94]  P. Heitjans,et al.  A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery , 2016 .

[95]  M. Xiao,et al.  Polymer electrolytes for lithium polymer batteries , 2016 .

[96]  Y. Iriyama,et al.  Modeling the Nucleation and Growth of Li at Metal Current Collector/LiPON Interfaces , 2016 .

[97]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[98]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[99]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[100]  M. R. Palacín,et al.  Why do batteries fail? , 2016, Science.

[101]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[102]  Lynden A. Archer,et al.  A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles , 2015, Nature Communications.

[103]  N. Imanishi,et al.  Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12 , 2015 .

[104]  Kenville E. Hendrickson,et al.  Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes , 2015 .

[105]  T. Thompson,et al.  Microstructure and Li‐Ion Conductivity of Hot‐Pressed Cubic Li7La3Zr2O12 , 2015 .

[106]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[107]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[108]  Zheng Wang,et al.  Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering , 2014 .

[109]  Tetsuya Tsuda,et al.  In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. , 2013, Physical chemistry chemical physics : PCCP.

[110]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[111]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[112]  J. Sakamoto,et al.  Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet , 2012, Journal of Materials Science.

[113]  M. Armand,et al.  Building better batteries , 2008, Nature.

[114]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[115]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[116]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[117]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[118]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[119]  J. L. Barton,et al.  The electrolytic growth of dendrites from ionic solutions , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[120]  Karen E. Thomas-alyea,et al.  Design of Porous Solid Electrolytes for Rechargeable Metal Batteries , 2018 .

[121]  Lei Zhang,et al.  Long lifespan lithium metal anodes enabled by Al2O3 sputter coating , 2018 .

[122]  Sehee Lee,et al.  Stable Lithium Deposition Using a Self-Optimizing Solid Electrolyte Composite , 2017 .

[123]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[124]  Yuki Yamada,et al.  Review—Superconcentrated Electrolytes for Lithium Batteries , 2015 .

[125]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[126]  N. Imanishi,et al.  Ta-Doped Li7La3Zr2O12 for Water-Stable Lithium Electrode of Lithium-Air Batteries , 2014 .

[127]  Robert O. Ritchie,et al.  Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries , 2013 .

[128]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .