In-situ visualization of lithium plating in all-solid-state lithium-metal battery

[1]  Gaozhan Liu,et al.  Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries , 2019, Nano Energy.

[2]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[3]  Xiulin Fan,et al.  Interface engineering of sulfide electrolytes for all-solid-state lithium batteries , 2018, Nano Energy.

[4]  Henghui Xu,et al.  Li3N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C. , 2018, Nano letters.

[5]  Im Doo Jung,et al.  Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure , 2018, Nano Energy.

[6]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[7]  M. Wagemaker,et al.  Operando monitoring the lithium spatial distribution of lithium metal anodes , 2018, Nature Communications.

[8]  Yunhui Gong,et al.  Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode. , 2018, Nano letters.

[9]  Hong Li,et al.  Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries. , 2018, ACS applied materials & interfaces.

[10]  Yunhui Gong,et al.  In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries. , 2017, Journal of the American Chemical Society.

[11]  Donald J. Siegel,et al.  Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12 , 2017 .

[12]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[13]  Kun Fu,et al.  Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries. , 2017, Nano letters.

[14]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[15]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[16]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[17]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[18]  Yayuan Liu,et al.  Solid-State Lithium-Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. , 2017, Nano letters.

[19]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[20]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[21]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[22]  Lucienne Buannic,et al.  Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. , 2017, ACS applied materials & interfaces.

[23]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[24]  Yutao Li,et al.  Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12 , 2016 .

[25]  M. Armand,et al.  Challenges and Issues Facing Lithium Metal for Solid State Rechargeable Batteries , 2016 .

[26]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[27]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[28]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[29]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[30]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[31]  M. Wagemaker,et al.  Direct Observation of Li‐Ion Transport in Electrodes under Nonequilibrium Conditions Using Neutron Depth Profiling , 2015 .

[32]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[33]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[34]  Selena M. Russell,et al.  Dendrite-free lithium deposition with self-aligned nanorod structure. , 2014, Nano letters.

[35]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[36]  N. Imanishi,et al.  Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal , 2014 .

[37]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[38]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[39]  P. Notten,et al.  In Situ Neutron Depth Profiling: A Powerful Method to Probe Lithium Transport in Micro‐Batteries , 2011, Advanced materials.

[40]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[41]  R. G. Downing,et al.  Neutron depth profiling technique for studying aging in Li-ion batteries , 2011 .

[42]  Y. Chiang Building a Better Battery , 2010, Science.

[43]  M. Armand,et al.  Building better batteries , 2008, Nature.

[44]  T. Abe,et al.  Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface , 2005 .

[45]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[46]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[47]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[48]  Peng Lu,et al.  Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth , 2016 .

[49]  Thomas A. Blake,et al.  Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode , 2013 .