Assessment of Turbulence-Chemistry Interaction in Hypersonic Turbulent Boundary Layers

Cp = heat capacity at constant pressure, J= K kg Cv = heat capacity at constant volume, J= K kg c = concentration, mol=m E = total energy, J=m H = shape factor, = , dimensionless h = specific enthalpy, J=kg h = heat of formation, J=kg J = diffusive mass flux, kg=m s Keq = equilibrium constant k = reaction rate coefficient Le = Lewis number, dimensionless M = Mach number, dimensionless ns = total number of species, dimensionless p = pressure, P s s R=Ms T, Pa q = turbulent kinetic energy, u02 v02 w02 =2, m=s qj = heat flux, @T=@xj , J= m s Re = Reynolds number, u = , dimensionless Re 2 = Reynolds number, u = w, dimensionless Re = Reynolds number, wu = w, dimensionless Sij = strain rate tensor, 1 2 @ui=@xj @uj=@xi , s 1 T = temperature, K Ta = activation temperature Tr = recovery temperature, T 1 0:9 1 =2 M , K u = friction velocity, m=s W = molecular weight, kg=mol w = chemical production rate, kg=m s Y = species mass fraction, dimensionless = specific heat ratio, Cp=Cv, dimensionless = boundary-layer thickness, mm = displacement thickness, mm = momentum thickness, mm = mixture thermal conductivity, J= K m s = mixture viscosity, kg= m s = stoichiometric coefficient, dimensionless = density, kg=m ij = shear stress tensor, 2 Sij 23 ijSkk, Pa

[1]  Lian Duan,et al.  Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number , 2011, Journal of Fluid Mechanics.

[2]  F. Williams,et al.  Turbulent Reacting Flows , 1981 .

[3]  M. Pino Martin,et al.  DNS of Hypersonic Turbulent Boundary Layers , 2004 .

[4]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[5]  Graham V. Candler,et al.  SUBGRID-SCALE MODEL FOR THE TEMPERATURE FLUCTUATIONS IN REACTING HYPERSONIC TURBULENT FLOWS , 1999 .

[6]  Assumed PDF modelling and PDF structure investigation using finite-rate chemistry , 2005 .

[7]  N. Adams,et al.  Direct simulation of turbulent supersonic boundary layers by an extended temporal approach , 2001, Journal of Fluid Mechanics.

[8]  Assessment of Turbulence-Chemistry Interactions in Missile Exhaust Plume Signature Analysis , 2003 .

[9]  A. T. Hsu,et al.  Probability density function approach for compressible turbulent reacting flows , 1994 .

[10]  Heng Zhou,et al.  The improvement of turbulence modeling for the aerothermal computation of hypersonic turbulent boundary layers , 2010 .

[11]  Sharath S. Girimaji,et al.  Modeling temperature and species fluctuations in turbulent, reacting flow , 1994 .

[12]  Sharath S. Girimaji,et al.  Assumed PDF turbulence-chemistry closure with temperature-composition correlations , 2003 .

[13]  L. Duan,et al.  E(cid:11)ect of Turbulence Fluctuations on Surface Heating Rate in Hypersonic Turbulent Boundary Layers , 2009 .

[14]  L. Duan,et al.  Eect of Turbulence Fluctuations on Surface Heating Rate in Hypersonic Turbulent Boundary Layers , 2009 .

[15]  M. Modest,et al.  Study of Turbulence-Radiation Interaction in Hypersonic Turbulent Boundary Layers , 2012 .

[16]  Richard A. Thompson,et al.  A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K , 1989 .

[17]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[18]  Lian Duan,et al.  Effect of Finite-rate Chemical Reactions on Turbulence in Hypersonic Turbulent Boundary Layers , 2008 .

[19]  M. Pino Martin Exploratory Studies of Turbulence/Chemistry Interaction in Hypersonic Flows , .

[20]  Lian Duan,et al.  Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature , 2010, Journal of Fluid Mechanics.

[21]  M. Pino Martin,et al.  Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments , 2007, Journal of Fluid Mechanics.

[22]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[23]  Sergio Pirozzoli,et al.  Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25 , 2004 .

[24]  L. Duan,et al.  Effective Approach for Estimating Turbulence-Chemistry Interaction in Hypersonic Turbulent Boundary Layers , 2011 .

[25]  Robert D. Moser,et al.  Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5 , 2000, Journal of Fluid Mechanics.

[26]  Graham V. Candler,et al.  EFFECT OF CHEMICAL REACTIONS ON DECAYING ISOTROPIC TURBULENCE , 1996 .

[27]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[28]  L. Duan,et al.  Procedure to Validate Direct Numerical Simulations of Wall- Bounded Turbulence Including Finite-Rate Reactions , 2009 .

[29]  Stephen B. Pope,et al.  Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods , 1998 .

[30]  Graham V. Candler,et al.  Temperature fluctuation scaling in reacting boundary layers , 2001 .

[31]  M. Modest,et al.  Study of Emission Turbulence-Radiation Interaction in Hypersonic Boundary Layers , 2010 .

[32]  J. Yos,et al.  TRANSPORT PROPERTIES OF NITROGEN, HYDROGEN, OXYGEN, AND AIR TO 30,000 K , 1963 .

[33]  Weijin Cao,et al.  Prediction of hypersonic boundary layer transition with variable specific heat on plane flow , 2011 .