Comparative study of Langerhans cells in normal and pathological human scars. II. Hypertrophic scars.

Langerhans cells (LCs) seem to play a crucial role in the immune system of the skin. Changes in their density, distribution, phenotype and/or morphology have been described in a number of skin diseases, mostly immunologically mediated. For this reason, we investigated LCs in human hypertrophic scars, since these scars are presently believed to have an immunological basis. A preliminary analysis of the histological features was carried out on vertical serial sections, stained with hematoxylin and eosin. Both epidermal and dermal components of hypertrophic scar biopsies were examined. The total epidermal thickness and the thickness of the single epidermal layers were also measured; the values obtained were similar to those of control skin and normotrophic scars. Subsequently, CDla-positive LCs, revealed by indirect immunofluorescence and immunoperoxidase techniques, were studied to determine their position among the epidermal layers and within the dermis, their dimensions, their density and their morphology. According to these observations, two main types of hypertrophic scars were identified. In the first type (7 scars), LCs were widely clustered within both the whole epidermis and the dermis. Their density was increased (about 750 cells/mm2 of epidermal area), if compared to control skin and normotrophic scars (both about 400 cells/mm2 of epidermal area; p less than 0.001). The epidermal cell profiles, nearly three times larger than those of control skin, exhibited a dense network of interconnected dendrites. Further analysis for the presence of HLA-DR molecules revealed an anomalous expression of these antigens on keratinocytes. In the second type (3 scars), LCs density within the stratum Malpighii was unchanged, relative to control skin and normal scars, while CDla-positive cell bodies remained numerous in basal position and within the subpapillary corion. Epidermal LCs, only slightly larger than those evidentiated in control skin, displayed short and retracted dendritic projections. The aberrant expression of HLA-DR antigens on keratinocytes was very weak and sparse. The present results strongly suggest an immunologically activated state of the tissues examined; they provide morphological data that support the involvement of the immune system in hypertrophic scarring.