How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s

Microseismic activity, recorded everywhere on Earth, is largely due to ocean waves. Recent progress has clearly identified sources of microseisms in the most energetic band, with periods from 3 to 10 s. In contrast, the generation of longer-period microseisms has been strongly debated. Two mechanisms have been proposed to explain seismic wave generation: a primary mechanism, by which ocean waves propagating over bottom slopes generate seismic waves, and a secondary mechanism which relies on the nonlinear interaction of ocean waves. Here we show that the primary mechanism explains the average power, frequency distribution, and most of the variability in signals recorded by vertical seismometers, for seismic periods ranging from 13 to 300 s. The secondary mechanism only explains seismic motions with periods shorter than 13 s. Our results build on a quantitative numerical model that gives access to time-varying maps of seismic noise sources.

[1]  Sharon Kedar,et al.  The origin of deep ocean microseisms in the North Atlantic Ocean , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  J. Hildebrand,et al.  Seafloor Compliance Observed by Long-Period Pressure and Displacement Measurements , 1991 .

[3]  Kiwamu Nishida Earth's Background Free Oscillations , 2013 .

[4]  M. Hino Equilibrium-range spectra of sand waves formed by flowing water , 1968, Journal of Fluid Mechanics.

[5]  R. Widmer-Schnidrig,et al.  The horizontal hum of the Earth: A global background of spheroidal and toroidal modes , 2008 .

[6]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[7]  A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes. , 2013, The Journal of the Acoustical Society of America.

[8]  G. Ekström,et al.  A radial model of anelasticity consistent with long-period surface-wave attenuation , 1996 .

[9]  Toshiro Tanimoto,et al.  The oceanic excitation hypothesis for the continuous oscillations of the Earth , 2004 .

[10]  F. Ardhuin,et al.  How moderate sea states can generate loud seismic noise in the deep ocean , 2012 .

[11]  P. Bernard Historical sketch of microseisms from past to future , 1990 .

[12]  F. Ardhuin,et al.  Infragravity waves across the oceans , 2014 .

[13]  Martin Schimmel,et al.  Ocean wave sources of seismic noise , 2011 .

[14]  J. Bidlot,et al.  User manual and system documentation of WAVEWATCH III R version 4.18 , 2014 .

[15]  P. Gerstoft,et al.  A unified theory of microseisms and hum , 2013 .

[16]  Barbara Romanowicz,et al.  Excitation of Earth's continuous free oscillations by atmosphere–ocean–seafloor coupling , 2004, Nature.

[17]  S. Webb,et al.  The Earth's hum: the excitation of Earth normal modes by ocean waves , 2008 .

[18]  S. Webb,et al.  Broadband seismology and noise under the ocean , 1998 .

[19]  T. Garlan,et al.  The ECORS-Truc Vert’08 nearshore field experiment: presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions , 2011 .

[20]  P. Gerstoft,et al.  Are deep‐ocean‐generated surface‐wave microseisms observed on land? , 2013 .

[21]  Tatsuhiko Saito Love-wave excitation due to the interaction between a propagating ocean wave and the sea-bottom topography , 2010 .

[22]  F. Ardhuin,et al.  Modelling secondary microseismic noise by normal mode summation , 2013 .

[23]  S. Webb The Earth’s ‘hum’ is driven by ocean waves over the continental shelves , 2007, Nature.

[24]  P. Bromirski Earth Vibrations , 2009, Science.

[25]  Klaus Hasselmann,et al.  A statistical analysis of the generation of microseisms , 1963 .

[26]  T. Tanimoto Excitation of normal modes by non-linear interaction of ocean waves , 2006 .

[27]  H.-H. Essen,et al.  Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean , 2000, Nature.

[28]  N. Kobayashi,et al.  Seafloor topography, ocean infragravity waves, and background Love and Rayleigh waves , 2009 .

[29]  Kiwamu Nishida Source spectra of seismic hum , 2014 .

[30]  Klaus Hasselmann,et al.  Feynman diagrams and interaction rules of wave‐wave scattering processes , 1966 .

[31]  Fabrice Ardhuin,et al.  Coastal wave reflection, directional spread, and seismoacoustic noise sources , 2012 .

[32]  H. Kanamori,et al.  Ionospheric detection of gravity waves induced by tsunamis , 2005 .

[33]  F. Ardhuin,et al.  Current effects on scattering of surface gravity waves by bottom topography , 2005, physics/0510150.

[34]  Michel Campillo,et al.  High-Resolution Surface-Wave Tomography from Ambient Seismic Noise , 2005, Science.

[35]  Fabrice Ardhuin,et al.  A numerical model for free infragravity waves : definition and validation at regional and global scales , 2014 .

[36]  J. Peterson,et al.  Observations and modeling of seismic background noise , 1993 .

[37]  J. Hildebrand,et al.  Estimating shear velocities in the oceanic crust from compliance measurements by two‐dimensional finite difference modeling , 1998 .

[38]  F. Ardhuin,et al.  Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth , 2012, Journal of Fluid Mechanics.

[39]  John H. Woodhouse,et al.  Determination of earthquake source parameters from waveform data for studies of global and regional seismicity , 1981 .

[40]  J. McWilliams,et al.  Infragravity waves in the deep ocean: Generation, propagation, and seismic hum excitation , 2008 .

[41]  M. Longuet-Higgins A theory of the origin of microseisms , 1950, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[42]  C. Mei The applied dynamics of ocean surface waves , 1983 .

[43]  G. Ekström Time domain analysis of Earth's long‐period background seismic radiation , 2001 .

[44]  Fabrice Ardhuin,et al.  From seismic noise to ocean wave parameters: General methods and validation , 2012 .

[45]  Barbara Romanowicz,et al.  A study of the relation between ocean storms and the Earth's hum , 2006 .

[46]  Nuno Lourenco,et al.  Morpho-tectonic analysis of the Azores Volcanic Plateau from a new bathymetric compilation of the area , 1998 .

[47]  Kazunari Nawa,et al.  Incessant excitation of the Earth’s free oscillations , 1998 .

[48]  Martin Schimmel,et al.  Modelling long-term seismic noise in various environments , 2012 .

[49]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[50]  Walter H. F. Smith,et al.  A global, self‐consistent, hierarchical, high‐resolution shoreline database , 1996 .

[51]  W. Munk,et al.  Booms and Busts in the Deep , 2010 .