Activation of platelet concentrate during preparation and storage.
暂无分享,去创建一个
Abstract This review will discuss how stored platelets become activated and will examine their ability to function and survive in vivo, posttransfusion. Experimental methods which have been shown to alter platelets during storage will be detailed. Using beta-thromboglobulin (beta-TG) and surface adhesion receptors as markers, investigators have examined the activation changes in platelet concentrates during preparation and storage. Resuspension of the platelet pellet after isolation of platelet-rich plasma appears to play a major role in producing platelet activation and beta-TG release during preparation. However, there is a significant amount of interdonor variability in platelet activation even at this early stage of storage. Over 5 days of storage, platelets release approximately 50% of their beta-TG contents. Furthermore, between 40% and 60% of the platelets express the alpha-granule membrane protein, P-selectin (GMP-140), during storage, which is also indicative of platelet activation. These activation changes correlate to some degree with platelet recovery posttransfusion but clearly do not explain the full lesion of platelet storage. The surface density of two platelet membrane receptors, glycoproteins (GP) Ib and IIb/IIIa, also change with activation, although in opposite directions. Platelet surface GPIb decreases initially with storage and then recovers, perhaps due to its relocation to the platelet surface from an intracellular pool. In contrast to GPIb, mean platelet surface GPIIb/IIIa increases slightly during storage, probably as a consequence of platelet activation and release of alpha-granule GPIIb/IIIa to the surface. Some hypotheses are offered regarding how these activated platelets can continue to circulate after transfusion. Further exploration of the platelet storage lesion will hopefully provide needed answers and thus permit better treatment of hemostatic disorders in the future.