Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production

[1]  A. Aivasidis,et al.  Co-digestion of sewage sludge and crude glycerol from biodiesel production , 2014 .

[2]  Nathan W. Ayer,et al.  Algae biodiesel life cycle assessment using current commercial data. , 2013, Journal of environmental management.

[3]  Christian J. R. Coronado,et al.  Glycerol: Production, consumption, prices, characterization and new trends in combustion , 2013 .

[4]  A. Kondo,et al.  Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101 , 2013, Bioprocess and Biosystems Engineering.

[5]  P. Nichols,et al.  High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils , 2013, Applied Microbiology and Biotechnology.

[6]  R. M. Willis,et al.  Biodiesel from Microalgae, Yeast, and Bacteria: Engine Performance and Exhaust Emissions , 2013 .

[7]  R. E. Lacey,et al.  Algal cell rupture using high pressure homogenization as a prelude to oil extraction , 2012 .

[8]  M. Borowitzka,et al.  Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption , 2012, Journal of Applied Phycology.

[9]  P. Nichols,et al.  Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils , 2012, Applied Microbiology and Biotechnology.

[10]  P. Nichols,et al.  Odd-chain polyunsaturated fatty acids in thraustochytrids. , 2011, Phytochemistry.

[11]  Qingyu Wu,et al.  Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. , 2011, Bioresource technology.

[12]  Russell W Stratton,et al.  Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. , 2011, Environmental science & technology.

[13]  C. Kim,et al.  Production of Lipids Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Microalga, Aurantiochytrium sp. KRS101 , 2011, Applied biochemistry and biotechnology.

[14]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[15]  John Ferrell,et al.  National Algal Biofuels Technology Roadmap , 2010 .

[16]  Olaf Kruse,et al.  An economic and technical evaluation of microalgal biofuels , 2010, Nature Biotechnology.

[17]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[18]  Christopher W. Wilson,et al.  Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels , 2010 .

[19]  Z. Wen,et al.  Production of Biodiesel Fuel from the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass , 2009 .

[20]  D. Mozaffarian,et al.  The Preventable Causes of Death in the United States: Comparative Risk Assessment of Dietary, Lifestyle, and Metabolic Risk Factors , 2009, PLoS medicine.

[21]  Yanna Liang,et al.  Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions , 2009, Biotechnology Letters.

[22]  C. Lan,et al.  Biofuels from Microalgae , 2008, Biotechnology progress.

[23]  Zhiyou Wen,et al.  Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. , 2008, Journal of agricultural and food chemistry.

[24]  Duane T. Johnson,et al.  The glycerin glut: Options for the value‐added conversion of crude glycerol resulting from biodiesel production , 2007 .

[25]  Gerhard Knothe,et al.  SOME ASPECTS OF BIODIESEL OXIDATIVE STABILITY , 2007 .

[26]  M. Huntley,et al.  CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal , 2007 .

[27]  T. L. Silva,et al.  DHA Concentration and Purification from the Marine Heterotrophic Microalga Crypthecodinium cohnii CCMP 316 by Winterization and Urea Complexation , 2007 .

[28]  T. Nakahara,et al.  Docosahexaenoic acid accumulation in thraustochytrids: search for the rationale , 2007 .

[29]  M. Rögner,et al.  Photosynthesis as a power supply for (bio-)hydrogen production. , 2006, Trends in plant science.

[30]  Dariush Mozaffarian,et al.  Fish intake, contaminants, and human health: evaluating the risks and the benefits. , 2006, JAMA.

[31]  Galen J. Suppes,et al.  Low-pressure hydrogenolysis of glycerol to propylene glycol , 2005 .

[32]  B. Leander,et al.  Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota) , 2004 .

[33]  Colin Ratledge,et al.  Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. , 2004, Biochimie.

[34]  Lawrence Pitt,et al.  Biohydrogen production: prospects and limitations to practical application , 2004 .

[35]  Carlson Se,et al.  Long-chain polyunsaturated fatty acids in infant nutrition: effects on infant development. , 2001 .

[36]  S. Carlson,et al.  Long-chain polyunsaturated fatty acids in infant nutrition: effects on infant development , 2001, Current opinion in clinical nutrition and metabolic care.

[37]  John R. Benemann,et al.  Hydrogen production by microalgae , 2000, Journal of Applied Phycology.

[38]  T. McMeekin,et al.  The Biotechnological Potential of Thraustochytrids , 1999, Marine Biotechnology.

[39]  J. Benemann,et al.  Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report , 1998 .

[40]  John Sheehan,et al.  Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report , 1998 .

[41]  T. Cavalier-smith,et al.  Thraustochytrids are Chromists, not Fungi: 18s rRNA Signatures of Heterokonta , 1994 .

[42]  L. Lardon,et al.  Life-cycle assessment of microalgae culture coupled to biogas production. , 2011, Bioresource technology.

[43]  Abul Kalam Hossain,et al.  Plant oils as fuels for compression ignition engines: a technical review and life-cycle analysis , 2010 .

[44]  W. Barclay,et al.  Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. , 2010 .

[45]  P. Lammers,et al.  Nitrogen-corrected apparent metabolizable energy value of crude glycerol for laying hens. , 2008, Poultry science.

[46]  David F. Batten,et al.  Life cycle assessment of environmental outcomes and greenhouse gas emissions from biofuels production in Western Australia : report to the Department of Agriculture and Food Government of Western Australia , 2008 .

[47]  David F. Batten,et al.  Life cycle assessment of environmental outcomes and greenhouse gas emissions from biofuels production in Western Australia. , 2008 .

[48]  J. Pluske Evaluation of glycerine as a co-product of biodiesel production for the pig industry. , 2007 .

[49]  T. W. Ryan,et al.  Exhaust Emissions of Biodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology Engine† , 2006 .

[50]  L. C. Teixeira Production of biodiesel. , 2005 .

[51]  S. Raghukumar Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids) , 2002 .

[52]  J. H. Van Gerpen,et al.  INVESTIGATION OF BIODIESEL THERMAL STABILITY UNDER SIMULATED IN-USE CONDITIONS , 1999 .

[53]  T. McMeekin,et al.  Polyunsaturated fatty acdis from Australian thraustochytrids: the potential to reduce our reliance on fish oils? , 1999 .

[54]  F. A. Holland,et al.  Liquid Mixing and Processing in Stirred Tanks , 1966 .

[55]  W. Oswald,et al.  Biological transformation of solar energy. , 1960, Advances in applied microbiology.