Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

[1]  S. A. Losilla,et al.  The direct approach to gravitation and electrostatics method for periodic systems. , 2010, The Journal of chemical physics.

[2]  PEKKA MANNINEN,et al.  Systematic Gaussian basis‐set limit using completeness‐optimized primitive sets. A case for magnetic properties , 2006, J. Comput. Chem..

[3]  Xavier Andrade,et al.  Time-dependent density-functional theory in massively parallel computer architectures: the octopus project , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. , 2008, Journal of chemical theory and computation.

[5]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[6]  Yihan Shao,et al.  Accelerating resolution-of-the-identity second-order Møller-Plesset quantum chemistry calculations with graphical processing units. , 2008, The journal of physical chemistry. A.

[7]  Wim Klopper,et al.  Gaussian basis sets and the nuclear cusp problem , 1986 .

[8]  Leif Laaksonen,et al.  A Numerical Hartree-Fock Program for Diatomic Molecules , 1996 .

[9]  E. A. McCullough,et al.  The partial-wave self-consistent-field method for diatomic molecules: Computational formalism and results for small molecules , 1975 .

[10]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[11]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[12]  E. A. Mccullough Seminumerical SCF calculations on small diatomic molecules , 1974 .

[13]  S. F. Boys,et al.  The integral formulae for the variational solution of the molecular many-electron wave equation in terms of Gaussian functions with direct electronic correlation , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  S. A. Losilla,et al.  The grid-based fast multipole method--a massively parallel numerical scheme for calculating two-electron interaction energies. , 2015, Physical chemistry chemical physics : PCCP.

[15]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[16]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[17]  Kimihiko Hirao,et al.  Linear-scaling multipole-accelerated Gaussian and finite-element Coulomb method. , 2008, The Journal of chemical physics.

[18]  Jean-François Méhaut,et al.  Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures. , 2009, The Journal of chemical physics.

[19]  R. Metzger,et al.  Piecewise polynomial configuration interaction natural orbital study of 1 s2 helium , 1979 .

[20]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[21]  S. A. Losilla,et al.  A divide and conquer real-space approach for all-electron molecular electrostatic potentials and interaction energies. , 2012, The Journal of chemical physics.

[22]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Todd J. Martínez,et al.  Generating Efficient Quantum Chemistry Codes for Novel Architectures. , 2013, Journal of chemical theory and computation.

[24]  J. C. Slater Atomic Shielding Constants , 1930 .

[25]  Luca Frediani,et al.  Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions , 2013 .

[26]  S. A. Losilla,et al.  Construction of the two-electron contribution to the Fock matrix by numerical integration , 2012 .

[27]  Karl A. Wilkinson,et al.  Acceleration of the GAMESS‐UK electronic structure package on graphical processing units , 2011, J. Comput. Chem..

[28]  A Eugene DePrince,et al.  Coupled Cluster Theory on Graphics Processing Units I. The Coupled Cluster Doubles Method. , 2011, Journal of chemical theory and computation.

[29]  J. Olsen,et al.  Large multiconfiguration Hartree-Fock calculations on the hyperfine structure of B(2P) and the nuclear quadrupole moments of 10B and 11B , 1991 .

[30]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[31]  C. Fischer A multi-configuration Hartree-Fock program with improved stability , 1984 .

[32]  Alejandro Pozo,et al.  A numerical approach , 2011 .

[33]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[34]  S. Hyodo,et al.  Gaussian finite-element mixed-basis method for electronic structure calculations , 2005 .

[35]  Alán Aspuru-Guzik,et al.  Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units , 2010, Computing in Science & Engineering.

[36]  S. A. Losilla,et al.  An efficient algorithm to calculate three-electron integrals for Gaussian-type orbitals using numerical integration , 2013 .

[37]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[38]  Lin Li,et al.  Graphics Processing Unit acceleration of the Random Phase Approximation in the projector augmented wave method , 2013, Comput. Phys. Commun..

[39]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[40]  P. Pyykkö,et al.  Two‐Dimensional fully numerical solutions of molecular Schrödinger equations. II. Solution of the Poisson equation and results for singlet states of H2 and HeH+ , 1983 .

[41]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[42]  Alán Aspuru-Guzik,et al.  Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units , 2010, Computing in Science & Engineering.

[43]  P. Pyykkö,et al.  Two‐dimensional fully numerical solutions of molecular Schrödinger equations. I. One‐electron molecules , 1983 .

[44]  Jörg Kussmann,et al.  Pre-selective screening for matrix elements in linear-scaling exact exchange calculations. , 2013, The Journal of chemical physics.

[45]  Kimihiko Hirao,et al.  A linear-scaling spectral-element method for computing electrostatic potentials. , 2008, The Journal of chemical physics.

[46]  Xavier Andrade,et al.  Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods. , 2013, Journal of chemical theory and computation.

[47]  M. Ratner Molecular electronic-structure theory , 2000 .

[48]  Luca Frediani,et al.  Linear scaling Coulomb interaction in the multiwavelet basis, a parallel implementation , 2014 .

[49]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[50]  Charlotte Froese Fischer,et al.  The Hartree-Fock method for atoms: A numerical approach , 1977 .

[51]  Edward F. Valeev,et al.  Low-order tensor approximations for electronic wave functions: Hartree-Fock method with guaranteed precision. , 2011, The Journal of chemical physics.

[52]  K. Singer,et al.  The use of Gaussian (exponential quadratic) wave functions in molecular problems - I. General formulae for the evaluation of integrals , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[53]  G. Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory. , 2004, The Journal of chemical physics.

[54]  Hidekazu Tomono,et al.  GPU based acceleration of first principles calculation , 2010 .