Optimisation of InGaAs infrared photovoltaic detectors

The ultimate signal-to-noise performance of infrared photodetectors is limited by the statistical nature of the thermal generation and recombination of charge carriers. Band-to-band Auger processes dominate in a high quality InGaAs used for photovoltaic detector operating at room temperature. The performance of devices operating in the 2–3.4μm spectral range has been analyzed theoretically. Homo- and heterostructure devices have been considered. The use of n+np+ (or n+pp+) with heavily doped regions has been found to prevent the recombination of photogenerated carriers at contacts, but the bulk thermal generation in the heavily doped regions will significantly reduce the performance of the devices.

[1]  R. G. Humphreys,et al.  Radiative lifetime in semiconductors for infrared detection , 1983 .

[2]  K. Okamoto,et al.  InGaAs Epilayers of High In Composition Grown on GaAs Substrates by Molecular Beam Epitaxy , 1994 .

[3]  P. K. Basu,et al.  Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs , 1991 .

[4]  A. M. White,et al.  The characteristics of minority-carrier exclusion in narrow direct gap semiconductors , 1985 .

[5]  P. E. Petersen,et al.  A comparison of the dominant Auger transitions in p-type (Hg,Cd)Te☆ , 1980 .

[6]  W. Gawron,et al.  Ultimate performance of infrared photodetectors and figure of merit of detector material , 1997 .

[7]  Paul R. Berger,et al.  In/sub 0.53/Ga/sub 0.47/As MSM photodiodes with transparent CTO Schottky contacts and digital superlattice grading , 1997 .

[8]  W. Anderson,et al.  Absorption constant of Pb1−xSnxTe and Hg1−xCdxTe alloys☆ , 1980 .

[9]  J. L. Shen,et al.  Material and electrical properties of highly mismatched InxGa1−xAs on GaAs by molecular‐beam epitaxy , 1993 .

[10]  Ramon U. Martinelli,et al.  2.6 μm InGaAs photodiodes , 1988 .

[11]  L. J. Chen,et al.  Dislocation generation mechanisms of InxGa1−xAs (0≤x≤1) epilayers grown on (100) InP substrates by molecular beam epitaxy , 1994 .

[12]  J. Kaniewski,et al.  INGAAS INFRARED DETECTORS , 1997 .

[13]  Jadwiga Bak-Misiuk,et al.  Reciprocal lattice mapping of InGaAs layers grown on InP(001) and GaAs(001) substrates , 1999, Other Conferences.

[14]  Abhay M. Joshi,et al.  Reliability of InGaAs detectors and arrays , 1992, Other Conferences.

[15]  Abhay M. Joshi,et al.  Near-infrared (1-3 micron) InGaAs detectors and arrays - Crystal growth leakage current and reliability , 1993, Other Conferences.