A conceptual framework for analyzing adaptable and reconfigurable manufacturing systems

Nowadays, market dynamics and the intense competition require manufacturing enterprises to cope with so-called `high velocity' markets. As a consequence, numerous studies aiming at quick and continuous adaptation of manufacturing systems have been carried out in order to render them more agile. This agility can be achieved through reconfigurable, adaptable and evolvable manufacturing systems, which have been studied by researchers according to various objectives and hypotheses. Despite the widespread literature on this field, we are not aware of a conceptual framework that could assist in analyzing, specifying, distinguishing and understanding these systems. Such a framework would also facilitate the classification of published works in this area. In this respect, we propose a formal framework to describe adaptable systems, which contributes to a structured definition of their underlying concepts. Concrete examples of existing solutions to adaptability, extracted from the manufacturing systems literature, are presented in accordance with the formalism suggested. The framework is generic enough to characterize a wide range of systems that can change their characteristics depending on the evolution of their production environment.

[1]  Kwangyeol Ryu,et al.  Reinforcement learning approach to goal-regulation in a self-evolutionary manufacturing system , 2012, Expert Syst. Appl..

[2]  Aurélie Charles,et al.  Improving the design and management of agile supply chains : feedback and application in the context of humanitarian aid , 2010 .

[3]  Henri Pierreval,et al.  Training a neural network to select dispatching rules in real time , 2010, Comput. Ind. Eng..

[4]  C. Baron,et al.  Product and process configuration: A constraint based approach , 2008, 2008 IEEE International Conference on Industrial Engineering and Engineering Management.

[5]  Damien Trentesaux,et al.  Self-organization in distributed manufacturing control: state-of-the-art and future trends , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[6]  Th. Borangiu,et al.  Open manufacturing control with agile reconfiguring of robot services , 2010, 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010).

[7]  M. Essafi Conception et optimisation d'allocation de ressources dans les lignes d'usinage reconfigurables , 2010 .

[8]  Samieh Mirdamadi Modélisation du processus de pilotage d'un atelier en temps réel à l'aide de la simulation en ligne couplée à l'exécution , 2009 .

[9]  Ahmed M. Deif,et al.  Agile MPC system linking manufacturing and market strategies , 2007 .

[10]  Claire Berchet Modélisation pour la simulation d'un système d'aide au pilotage industriel , 2000 .

[11]  N. Nakamura,et al.  Reactive JIT ordering system for changes in the mean and variance of demand , 2004 .

[12]  Hoda A. ElMaraghy,et al.  Flexible and reconfigurable manufacturing systems paradigms , 2005 .

[13]  Bernard P. Zeigler,et al.  Theory of modeling and simulation , 1976 .

[14]  Abderrahmane Bensmaine,et al.  A non-dominated sorting genetic algorithm based approach for optimal machines selection in reconfigurable manufacturing environment , 2013, Comput. Ind. Eng..

[15]  Jihad Reaidy Etude et mise en œuvre d'une architecture d'agents en réseau dans les systèmes dynamiques situés : pilotage des systèmes de production complexes , 2003 .

[16]  Karim Tamani,et al.  Intelligent distributed and supervised flow control methodology for production systems , 2009, Eng. Appl. Artif. Intell..

[17]  Aamer Baqai Co-conception des processus d'usinage et des configurations cinématiques d'un système de production reconfigurable , 2010 .

[18]  Jungtae Mun,et al.  Self-evolution framework of manufacturing systems based on fractal organization , 2009, Comput. Ind. Eng..

[19]  M. B. Aryanezhad,et al.  Dynamic cell formation and the worker assignment problem: a new model , 2009 .

[20]  Georges Habchi,et al.  A model for manufacturing systems simulation with a control dimension , 2003, Simul. Model. Pract. Theory.

[21]  Mihajlo D. Mesarovic,et al.  Theorie des systemes hierarchiques a niveaux multiples , 1980 .

[22]  José Barbosa,et al.  Bio-inspired multi-agent systems for reconfigurable manufacturing systems , 2012, Eng. Appl. Artif. Intell..

[23]  Alexandre Dolgui,et al.  Genetic algorithm for balancing reconfigurable machining lines , 2013, Comput. Ind. Eng..

[24]  Jean-Pierre Meinadier Intégration et ingénierie des systèmes informatiques , 1995 .

[25]  Mehmet Bayram Yildirim,et al.  Machine number, priority rule, and due date determination in flexible manufacturing systems using artificial neural networks , 2006, Comput. Ind. Eng..

[26]  Damien Trentesaux,et al.  An effective potential field approach to FMS holonic heterarchical control , 2012 .

[27]  Valerie Tardif,et al.  An adaptive approach to controlling kanban systems , 2001, Eur. J. Oper. Res..

[28]  Angappa Gunasekaran,et al.  Agile manufacturing: A framework for research and development , 1999 .

[29]  Mohamed Ben Ahmed,et al.  Systeme interactif d'aide a la reconfiguration des systemes de production (SIAR) , 2001 .

[30]  Mario Sergio Salerno,et al.  Reconfigurable organisation to cope with unpredictable goals , 2009 .

[31]  Ambalavanar Tharumarajah,et al.  A self-organising view of manufacturing enterprises , 2003, Comput. Ind..

[32]  David Z. Zhang,et al.  Towards theory building in agile manufacturing strategies--Case studies of an agility taxonomy , 2011 .

[33]  Ahmed M. Deif,et al.  A control approach to explore the dynamics of capacity scalability in reconfigurable manufacturing systems , 2006 .

[34]  F. Musharavati RECONFIGURABLE MANUFACTURING SYSTEMS , 2010 .

[35]  Ching-Torng Lin,et al.  Agility evaluation using fuzzy logic , 2006 .

[36]  G. Bel,et al.  Modélisation et simulation de systèmes automatisés de production , 1985 .

[37]  José Barbosa,et al.  Nervousness in Dynamic Self-organized Holonic Multi-agent Systems , 2012, PAAMS.