Peak and residual strength characteristics of cement-treated soil cured under different consolidation conditions

Abstract The shear strength of cement-treated soil can be changed by both cementation and consolidation during the early stages of hardening because of cement hydration. Based on the results of triaxial and unconfined compression tests, this paper describes the effects of isotropic and one-dimensional consolidation stress, applied during the curing period, on the undrained peak and residual shear strengths of cement-treated soil. The sample used was a mixture of fine-grained sand and ordinary Portland cement. A consolidated undrained triaxial compression test (ICU) was conducted on the specimens immediately after the cement treatment. Each test was conducted under different consolidation pressures, curing times and delayed loading times. The following conclusions were developed from the results and discussions: (1) the undrained peak shear strength of cement-treated soil, cured under different consolidation conditions, increases with an increase in either the consolidation pressure or the curing time, whereas it gradually decreases with an increase in the delayed loading time. (2) The rate of undrained strength increase resulting from consolidation differs significantly between isotropic and one-dimensional consolidations. (3) For a curing time of between one and seven days, the rate of strength increase by isotropic consolidation exceeds that by one-dimensional consolidation. The simultaneous volumetric change of cement-treated soil during consolidation depends on the stress conditions of the specimen, that is, the difference between isotropic and one-dimensional consolidations. (4) When the test is not conducted under nearly in-situ conditions, the undrained shear strength may be underestimated, depending on the time interval between the cement treatment and the start of consolidation. (5) The shear strength in the residual state is influenced by the consolidation pressure during curing. (6) As the consolidation pressure during curing increases, the specimens exhibit a higher residual strength.