Harnessing plasmonics for solar cells

Plasmons are free-electron oscillations in a conductor that allow light to be manipulated at the nanoscale. The ability of plasmons to guide and confine light on subwavelength scales is opening up new design possibilities for solar cells.

[1]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[2]  Martin A. Green,et al.  The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions , 2011 .

[3]  Arnold F. McKinley,et al.  Plasmonics and nanophotonics for photovoltaics , 2011 .

[4]  P. Peumans,et al.  Coherent light trapping in thin-film photovoltaics , 2011 .

[5]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[6]  Yi Zhang,et al.  Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. , 2012, Nano letters.

[7]  Constantin R. Simovski,et al.  On electromagnetic characterization and homogenization of nanostructured metamaterials , 2010 .

[8]  Er-Ping Li,et al.  Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells , 2009 .

[9]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[10]  M. Green The path to 25% silicon solar cell efficiency: History of silicon cell evolution , 2009 .

[11]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[12]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[13]  Martin Dressel,et al.  Optical transmission through subwavelength hole arrays in ultrathin metal films , 2011 .

[14]  Dennis G. Hall,et al.  Absorption enhancement in silicon‐on‐insulator waveguides using metal island films , 1996 .

[15]  K. Catchpole,et al.  Light trapping with plasmonic particles: beyond the dipole model. , 2011, Optics Express.

[16]  Jung-Yong Lee,et al.  The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. , 2010, Optics express.

[17]  K. Joulain,et al.  Definition and measurement of the local density of electromagnetic states close to an interface , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[18]  E. Schiff Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals , 2011 .

[19]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[20]  T. Gmitter,et al.  Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures. , 1988, Physical review letters.

[21]  M. Green Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices , 2011 .

[22]  Gavin Conibeer,et al.  Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber , 2010 .

[23]  Y. Akimov,et al.  Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells , 2010, Nanotechnology.

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  E. Yablonovitch Statistical ray optics , 1982 .