A computational study of CO2, N2, and CH4 adsorption in zeolites

Abstract The adsorption properties of CO2, N2 and CH4 in all-silica zeolites were studied using molecular simulations. Adsorption isotherms for single components in MFI were both measured and computed showing good agreement. In addition simulations in other all silica structures were performed for a wide range of pressures and temperatures and for single components as well as binary and ternary mixtures with varying bulk compositions. The adsorption selectivity was analyzed for mixtures with bulk composition of 50:50 CO2/CH4, 50:50 CO2/N2, 10:90 CO2/N2 and 5:90:5 CO2/N2/CH4 in MFI, MOR, ISV, ITE, CHA and DDR showing high selectivity of adsorption of CO2 over N2 and CH4 that varies with the type of crystal and with the mixture bulk composition.

[1]  V. Choudhary,et al.  Adsorption of methane, ethane, ethylene, and carbon dioxide on silicalite-l , 1996 .

[2]  A. V. Kiselev,et al.  Molecular statistical calculation of gas adsorption by silicalite , 1985 .

[3]  B. Smit,et al.  Understanding the role of sodium during adsorption: a force field for alkanes in sodium-exchanged faujasites. , 2004, Journal of the American Chemical Society.

[4]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[5]  S. Auerbach,et al.  New Force Field for Na Cations in Faujasite-Type Zeolites , 1999 .

[6]  B. Smit,et al.  Molecular path control in zeolite membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  David S. Sholl,et al.  Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolites: The Impact of Pore Size and Shape† , 2002 .

[8]  Z. Hao,et al.  Adsorption/desorption studies of NOx on well-mixed oxides derived from Co-Mg/Al Hydrotalcite-like compounds. , 2006, The journal of physical chemistry. B.

[9]  Rajamani Krishna,et al.  United Atom Force Field for Alkanes in Nanoporous Materials , 2004 .

[10]  B. Smit,et al.  A computational method to characterize framework aluminum in aluminosilicates. , 2007, Angewandte Chemie.

[11]  P. Q. Du,et al.  Molecular statistical calculation of the thermodynamic adsorption characteristics of zeolites using the atom–atom approximation. Part 3.—Adsorption of hydrocarbons , 1981 .

[12]  B. Smit,et al.  Understanding zeolite catalysis: inverse shape selectivity revised. , 2002, Angewandte Chemie.

[13]  J. Falconer,et al.  Effects of impurities on CO2/CH4 separations through SAPO-34 membranes , 2005 .

[14]  Prabir K. Dutta,et al.  Handbook of Zeolite Science and Technology , 2003 .

[15]  D. Choi,et al.  Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method , 2005 .

[16]  K. Kusakabe,et al.  Gas Permeation Properties of Ion-Exchanged Faujasite-Type Zeolite Membranes , 1999 .

[17]  J. Gale,et al.  A comparative simulation study of the adsorption of nitrogen and methane in siliceous heulandite and chabazite , 2001 .

[18]  K. Kusakabe,et al.  Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube , 2001 .

[19]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[20]  Michael L. Klein,et al.  Pairwise additive effective potentials for nitrogen , 1980 .

[21]  J. Patarin,et al.  Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction. 2. Nitrogen and carbon monoxide , 1993 .

[22]  S. Murad,et al.  Molecular dynamics simulations of gas separations using faujasite-type zeolite membranes. , 2004, The Journal of chemical physics.

[23]  N. Austin,et al.  Investigation of the Air Separation Properties of Zeolites Types A, X and Y by Monte Carlo Simulations , 1995 .

[24]  T. Tomita,et al.  Gas separation characteristics of DDR type zeolite membrane , 2004 .

[25]  U. Häfeli,et al.  Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy , 2004 .

[26]  J. Falconer,et al.  SAPO-34 membranes for CO2/CH4 separation , 2004 .

[27]  C. Arean,et al.  Methylene blue encapsulated in silica-based mesophases: characterisation and electrochemical activity , 2005 .

[28]  F. Kapteijn,et al.  Transport and separation properties of a silicalite-1 membrane—I. Operating conditions , 1999 .

[29]  J. A. Delgado,et al.  Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures , 2006 .

[30]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[31]  R. Noble,et al.  Synthesis and Permeation Properties of SAPO-34 Tubular Membranes , 1998 .

[32]  J. Falconer,et al.  Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes , 1999 .

[33]  Diffusion in Zeolites , 2003 .

[34]  A. Fahmi,et al.  Grand canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM-5 , 1997 .

[35]  B. Smit,et al.  Entropy effects during sorption of alkanes in zeolites. , 2002, Chemical Society reviews.

[36]  Doros N. Theodorou,et al.  Prediction of Permeation Properties of CO2 and N2 through Silicalite via Molecular Simulations , 2001 .

[37]  C. E. Webster,et al.  Multiple Equilibrium Analysis Description of Adsorption on Na−Mordenite and H−Mordenite , 1999 .

[38]  O. Talu,et al.  Adsorption Equilibria of C1 to C4 Alkanes, CO2, and SF6 on Silicalite , 1998 .

[39]  J. J. Pis,et al.  Structural Changes in Polyethylene Terephthalate (PET) Waste Materials Caused by Pyrolysis and CO2 Activation , 2006 .

[40]  Donald W Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[41]  W. M. Meier,et al.  Atlas of Zeolite Structure Types , 1988 .

[42]  B. Smit,et al.  Incommensurate diffusion in confined systems. , 2003, Physical review letters.

[43]  E Beerdsen,et al.  Force field parametrization through fitting on inflection points in isotherms. , 2004, Physical review letters.

[44]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[45]  P. Harlick,et al.  Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280 , 2003 .

[46]  Miguel Menéndez,et al.  Separation of CO2/N2 mixtures using MFI‐type zeolite membranes , 2004 .

[47]  F. Kapteijn,et al.  Role of Adsorption in the Permeation of CH4 and CO2 through a Silicalite-1 Membrane , 2006 .

[48]  Tracy Q. Gardner,et al.  Adsorption and diffusion properties of zeolite membranes by transient permeation , 2002 .

[49]  P. Q. Du,et al.  Molecular statistical calculation of the thermodynamic adsorption characteristics of zeolites using the atom–atom approximation. Part 1.—Adsorption of methane by zeolite NaX , 1978 .

[50]  P. Harlick,et al.  Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30 , 2002 .

[51]  Shuji Himeno,et al.  Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite , 2007 .

[52]  B. Smit,et al.  Understanding cage effects in the n-alkane conversion on zeolites , 2006 .