Visualization of Chaos for Finance Majors

Efforts to simulate turbulence in the financial markets include experiments with the logistic equation: x(t)=kappa x(t-1)[1-x(t-1)], with 0

[1]  A. N. Sharkovskiĭ COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .

[2]  A. Lo Long-Term Memory in Stock Market Prices , 1989 .

[3]  S. Grossmann,et al.  Invariant Distributions and Stationary Correlation Functions of One-Dimensional Discrete Processes , 1977 .

[4]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[5]  C. Los,et al.  Wavelet Multiresolution Analysis of High-Frequency Asian FX Rates, Summer 1997 , 2000 .

[6]  Jensen,et al.  Images of the critical points of nonlinear maps. , 1985, Physical review. A, General physics.

[7]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[8]  B. Mandelbrot Forecasts of Future Prices, Unbiased Markets, and "Martingale" Models , 1966 .

[9]  C. Los A Scientific View of Economic Data Analysis , 1991 .

[10]  I. Prigogine,et al.  Exploring Complexity: An Introduction , 1989 .

[11]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[12]  M. Dacorogna,et al.  Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis , 1990 .

[13]  Edgar E. Peters Patterns in the dark : understanding risk and financial crisis with complexity theory , 1999 .

[14]  P. Verhulst Recherches mathématiques sur la loi d’accroissement de la population , 2022, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.

[15]  Edgar E. Peters Fractal Market Analysis: Applying Chaos Theory to Investment and Economics , 1994 .