A Motion Parameter Estimation Method for Radar Maneuvering Target in Gaussian Clutter

It is known that accurate motion parameter estimation makes significant benefits to radar target tracking, imaging and recognition. However, maneuvering targets usually cause across-range-unit and across-Doppler-unit effects, which make it difficult to accurately estimate the motion parameters of the target. The generalized Radon-Fourier transform (GRFT) has been proposed to estimate the motion parameter vector of maneuvering targets, but only the noise scenario is considered. In this paper, the normalized adaptive GRFT (NAGRFT) is first proposed for motion parameter estimation, which is proven to be the maximum likelihood estimator (MLE) of the motion parameter vector in Gaussian clutter. Then, we derive the Cramer-Rao lower bound (CRLB) for the motion parameter vector as a comparison of the estimation mean square error (MSE) of the NAGRFT. In this derivation, the target motion is described by a high-order polynomial model, and a Gaussian-shaped function is adopted to characterize the power spectrum density of the homogenous clutter. Finally, to demonstrate the optimal estimation performance of the proposed NAGRFT, numerical experiments are provided, which show that the estimation MSE of the NAGRFT can reach the CRLB. Experiments are also provided to analyze the relationship between the CRLB and clutter parameters.

[1]  X. R. Li,et al.  A Survey of Maneuvering Target Tracking—Part III: Measurement Models , 2001 .

[2]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Erik G. Larsson,et al.  Fundamentals of massive MIMO , 2016, SPAWC.

[4]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[5]  L.E. Brennan,et al.  Theory of Adaptive Radar , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Xu Zhou,et al.  Adaptive Radon–Fourier Transform for Weak Radar Target Detection , 2018, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Xiang-Gen Xia,et al.  Focus-before-detection radar signal processing: part ii–recent developments , 2018, IEEE Aerospace and Electronic Systems Magazine.

[8]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[9]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Yingning Peng,et al.  Radon-Fourier Transform for Radar Target Detection, I: Generalized Doppler Filter Bank , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Wei Yi,et al.  Fast Non-Searching Method for Maneuvering Target Detection and Motion Parameters Estimation , 2016, IEEE Transactions on Signal Processing.

[12]  Chung-ching Chen,et al.  Target-Motion-Induced Radar Imaging , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Benjamin Friedlander,et al.  A modification of the discrete polynomial transform , 1998, IEEE Trans. Signal Process..

[14]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[15]  Wei Yi,et al.  A Fast Maneuvering Target Motion Parameters Estimation Algorithm Based on ACCF , 2015, IEEE Signal Processing Letters.

[16]  Yingning Peng,et al.  Doppler distributed clutter model of airborne radar and its parameters estimation , 2004, Science in China Series F: Information Sciences.

[17]  Xiang-Gen Xia,et al.  Focus-before-detection radar signal processing: part i—challenges and methods , 2017, IEEE Aerospace and Electronic Systems Magazine.

[18]  Christ D. Richmond,et al.  Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments , 2000, IEEE Trans. Signal Process..

[19]  E. J. Kelly,et al.  The Radar Measurement of Range, Velocity and Acceleration , 1961, IRE Transactions on Military Electronics.

[20]  Benjamin Friedlander,et al.  The discrete polynomial-phase transform , 1995, IEEE Trans. Signal Process..

[21]  Boaz Porat,et al.  The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase , 1991, IEEE Trans. Signal Process..

[22]  LI X.RONG,et al.  Survey of Maneuvering Target Tracking. Part II: Motion Models of Ballistic and Space Targets , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Teng Long,et al.  Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition , 2019, Science China Information Sciences.

[24]  Peter O'Shea,et al.  A fast algorithm for estimating the parameters of a quadratic FM signal , 2004, IEEE Transactions on Signal Processing.

[25]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[26]  B. D. Steinberg,et al.  Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique , 1988 .

[27]  Yingning Peng,et al.  Radon-Fourier Transform for Radar Target Detection (II): Blind Speed Sidelobe Suppression , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[28]  T. Abatzoglou,et al.  Range, radial velocity, and acceleration MLE using radar LFM pulse train , 1998 .

[29]  Yingning Peng,et al.  Radar Maneuvering Target Motion Estimation Based on Generalized Radon-Fourier Transform , 2012, IEEE Transactions on Signal Processing.

[30]  Yue Peng,et al.  Parametric inverse synthetic aperture radar manoeuvring target motion compensation based on particle swarm optimiser , 2011 .

[31]  X. Rong Li,et al.  A Survey of Maneuvering Target Tracking—Part IV: Decision-Based Methods , 2002 .

[32]  Jianyu Yang,et al.  Generalized High-Order Phase Function for Parameter Estimation of Polynomial Phase Signal , 2008, IEEE Transactions on Signal Processing.

[33]  Phillip A. Bello,et al.  Joint estimation of delay, Doppler, and Doppler rate , 1960, IRE Trans. Inf. Theory.

[34]  James R. Schott,et al.  Matrix Analysis for Statistics , 2005 .

[35]  Yingning Peng,et al.  Radon-Fourier Transform for Radar Target Detection (III): Optimality and Fast Implementations , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[36]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[37]  Wei Yi,et al.  Radar maneuvering target detection and motion parameter estimation based on TRT-SGRFT , 2017, Signal Process..

[38]  Boualem Boashash,et al.  Comments on "The Cramer-Rao lower bounds for signals with constant amplitude and polynomial phase" , 1998, IEEE Trans. Signal Process..

[39]  J. Billingsley,et al.  Low-Angle Radar Land Clutter: Measurements and Empirical Models , 2002 .