Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays

[1]  Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models , 2009 .

[2]  Wan-Tong Li,et al.  Traveling waves in a diffusive predator–prey model with holling type-III functional response , 2008 .

[3]  Wan-Tong Li,et al.  Traveling fronts in diffusive and cooperative Lotka–Volterra system with nonlocal delays , 2007 .

[4]  Wan-Tong Li,et al.  Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay , 2007 .

[5]  Wan-Tong Li,et al.  Monotone travelling fronts of a food-limited population model with nonlocal delay , 2007 .

[6]  Chunhua Ou,et al.  Persistence of wavefronts in delayed nonlocal reaction-diffusion equations , 2007 .

[7]  Shangbing Ai,et al.  Traveling wave fronts for generalized Fisher equations with spatio-temporal delays , 2007 .

[8]  Shigui Ruan,et al.  Spatial-Temporal Dynamics in Nonlocal Epidemiological Models , 2007 .

[9]  Xinfu Chen,et al.  Uniqueness and Asymptotics of Traveling Waves of Monostable Dynamics on Lattices , 2006, SIAM J. Math. Anal..

[10]  Wan-Tong Li,et al.  Existence of travelling wave solutions in delayed reaction–diffusion systems with applications to diffusion–competition systems , 2006 .

[11]  Wan-Tong Li,et al.  Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays , 2006 .

[12]  Duan Binbin A prior bounds of solutions of nonlinear Volterra reaction-diffusion systems with infinite delay , 2006 .

[13]  Stephen A. Gourley,et al.  Delayed non-local diffusive systems in biological invasion and disease spread , 2006 .

[14]  Stephen A. Gourley,et al.  Monotone wave-fronts in a structured population model with distributed maturation delay , 2005 .

[15]  Wenzhang Huang,et al.  Travelling waves for delayed reaction–diffusion equations with global response , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Shiwang Ma,et al.  Propagation and its failure in a lattice delayed differential equation with global interaction , 2005 .

[17]  Jianhong Wu,et al.  Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics , 2004 .

[18]  Stephen A. Gourley,et al.  Wavefronts and global stability in a time-delayed population model with stage structure , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Shigui Ruan,et al.  Convergence and Travelling Fronts in Functional Differential Equations with Nonlocal Terms: A Competition Model , 2003, SIAM J. Math. Anal..

[20]  S. A. Gourley,et al.  Monotone travelling fronts in an age-structured reaction-diffusion model of a single species , 2002, Journal of mathematical biology.

[21]  Stephen A. Gourley,et al.  Travelling fronts for the KPP equation with spatio-temporal delay , 2002 .

[22]  J. Tiedje,et al.  A Two-Species Test of the Hypothesis That Spatial Isolation Influences Microbial Diversity in Soil , 2002, Microbial Ecology.

[23]  Xingfu Zou,et al.  Traveling Wave Fronts of Reaction-Diffusion Systems with Delay , 2001 .

[24]  Shiwang Ma,et al.  Traveling Wavefronts for Delayed Reaction-Diffusion Systems via a Fixed Point Theorem , 2001 .

[25]  Wenzhang Huang,et al.  Uniqueness of the Bistable Traveling Wave for Mutualist Species , 2001 .

[26]  Xiao-Qiang Zhao,et al.  Global Asymptotic Stability of Traveling Waves in Delayed Reaction-Diffusion Equations , 2000, SIAM J. Math. Anal..

[27]  X. Zou,et al.  Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method , 1997 .

[28]  Xinfu Chen,et al.  Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations , 1997, Advances in Differential Equations.

[29]  Traveling waves as limits of solutions on bounded domains , 1996 .

[30]  Jianhong Wu Theory and Applications of Partial Functional Differential Equations , 1996 .

[31]  Jacob Kanel,et al.  Existence of wave front solutions and estimates of wave speed for a competition-diffusion system , 1996 .

[32]  Qing Fang,et al.  Stability of monotone travelling waves for competition-diffusion equations , 1996 .

[33]  Van Vuuren,et al.  The existence of travelling plane waves in a general class of competition-diffusion systems , 1995 .

[34]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .

[35]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[36]  Konstantin Mischaikow,et al.  Travelling waves in predator-prey systems , 1993 .

[37]  Konstantin Mischaikow,et al.  Travelling waves for mutualist species , 1993 .

[38]  Jonathan Silvertown,et al.  Cellular Automaton Models of Interspecific Competition for Space--The Effect of Pattern on Process , 1992 .

[39]  Konstantin Mischaikow,et al.  Connected simple systems, transition matrices, and heteroclinic bifurcations , 1992 .

[40]  Daniel Daners,et al.  Abstract evolution equations, periodic problems and applications , 1992 .

[41]  B. Zinner,et al.  Stability of traveling wavefronts for the discrete Nagumo equation , 1991 .

[42]  Michael Shearer Viscous profiles and numerical methods for shock waves , 1991 .

[43]  R. Martin,et al.  Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence. , 1991 .

[44]  Nicholas F. Britton,et al.  Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model , 1990 .

[45]  Hal L. Smith,et al.  Abstract functional-differential equations and reaction-diffusion systems , 1990 .

[46]  N. Britton Aggregation and the competitive exclusion principle. , 1989, Journal of Theoretical Biology.

[47]  Klaus W. Schaaf Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations , 1987 .

[48]  Simon A. Levin,et al.  Population Models and Community Structure in Heterogeneous Environments , 1986 .

[49]  C. Conley,et al.  An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model , 1984 .

[50]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[51]  Robert A. Gardner Existence and stability of travelling wave solutions of competition models: A degree theoretic approach , 1982 .

[52]  Paul C. Fife,et al.  Propagating fronts for competing species equations with diffusion , 1980 .

[53]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[54]  David H. Sattinger,et al.  On the stability of waves of nonlinear parabolic systems , 1976 .

[55]  C. Travis,et al.  Existence and stability for partial functional differential equations , 1974 .

[56]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[57]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.