New Sign Uncertainty Principles

We prove new sign uncertainty principles which vastly generalize the recent developments of Bourgain, Clozel & Kahane and Cohn & Goncalves, and apply our results to a variety of spaces and operators. In particular, we establish new sign uncertainty principles for Fourier and Dini series, the Hilbert transform, the discrete Fourier and Hankel transforms, spherical harmonics, and Jacobi polynomials, among others. We present numerical evidence highlighting the relationship between the discrete and continuous sign uncertainty principles for the Fourier and Hankel transforms, which in turn are connected with the sphere packing problem via linear programming. Finally, we explore some connections between the sign uncertainty principle on the sphere and spherical designs.

[1]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[2]  Nathan Linial,et al.  The Equivalence of Two Problems on the Cube , 1992, J. Comb. Theory, Ser. A.

[3]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[4]  Estimates for certain integrals of products of six Bessel functions , 2015, 1509.06309.

[5]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[6]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[7]  A universality law for sign correlations of eigenfunctions of differential operators , 2019, 1903.06826.

[8]  Yufei Zhao,et al.  SPHERE PACKING BOUNDS VIA SPHERICAL CODES , 2012, 1212.5966.

[9]  V. I. Ivanov,et al.  Uncertainty Principles for Eventually Constant Sign Bandlimited Functions , 2019, SIAM J. Math. Anal..

[10]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[11]  L. Grafakos Classical Fourier Analysis , 2010 .

[12]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[13]  Henry Cohn,et al.  The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[14]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[15]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[16]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[17]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[18]  T. Hales Cannonballs and Honeycombs , 2000 .

[19]  S. Steinerberger,et al.  Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots , 2016, 1602.03366.

[20]  Hao Huang,et al.  Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture , 2019, Annals of Mathematics.

[21]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[22]  H. Fisk Johnson,et al.  An improved method for computing a discrete Hankel transform , 1987 .

[23]  Henry Cohn,et al.  An optimal uncertainty principle in twelve dimensions via modular forms , 2017 .

[24]  Karim Belabas,et al.  User’s Guide to PARI / GP , 2000 .

[25]  It Informatics On-Line Encyclopedia of Integer Sequences , 2010 .

[26]  J. Kahane,et al.  Principe d'Heisenberg et fonctions positives , 2008, 0811.4360.

[27]  Eiichi Bannai,et al.  Tight spherical designs, I , 1979 .

[28]  George Gasper Linearization of the product of Jacobi polynomials. III , 1970 .

[29]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[30]  A. Offord Introduction to the Theory of Fourier Integrals , 1938, Nature.

[31]  Pooya Hatami,et al.  Variations on the Sensitivity Conjecture , 2011, Theory Comput..

[32]  K. Soundararajan,et al.  Fourier optimization and prime gaps , 2017, Commentarii Mathematici Helvetici.

[33]  S. K. Pichorides On the best values of the constants in the theorem of M. Riesz, Zygmund and Kolmogorov , 1972 .

[34]  Gabriele Nebe,et al.  On tight spherical designs , 2012, 1201.1830.