A weighted one-level density of families of $L$-functions

This paper is devoted to a weighted version of the one-level density of the non-trivial zeros of L-functions, tilted by a power of the L-function evaluated at the central point. Assuming the Riemann Hypothesis and the ratio conjecture, for some specific families of L-functions we prove that the same structure suggested by the density conjecture holds also in this weighted investigation, if the exponent of the weight is small enough. Moreover we speculate about the general case, conjecturing explicit formulae for the weighted kernels. 1. A weighted version of the one-level density Let us assume the Riemann Hypothesis for all the L-functions that arise. The classical one-level density considers a smooth localization at the central point of the counting function of the non-trivial zeros of an L-function, averaged over a “natural” family of Lfunctions in the Selberg class. More specifically, given an even and real-valued function f in the Schwartz space and an L-function L(s) in a family F , we consider the quantity (1.1) ∑ γL f(c(L)γL) where γL denotes the imaginary part of a generic non-trivial zero of L and c(L) the logconductor of L(s) at the central point. We recall that 1/c(L) is the mean spacing of the non-trivial zeros of L(s) around s = 1 2 . The one-level density for the family F is the average of the above quantity over the family, i.e. (1.2) lim X→∞ 1 ∑ L∈FX 1 ∑ L∈FX ∑

[1]  J. Keating L-functions and the characteristic polynomials of random matrices , 2005 .

[2]  N. Snaith,et al.  Applications of the L‐functions ratios conjectures , 2005, math/0509480.

[3]  J. Gottschalk,et al.  Reduction formulae for generalised hypergeometric functions of one variable , 1988 .

[4]  Moments of the Riemann zeta function , 2006, math/0612106.

[5]  A. Saha,et al.  Explicit refinements of Böcherer's conjecture for Siegel modular forms of squarefree level , 2015, Journal of the Mathematical Society of Japan.

[6]  Kazuki Morimoto,et al.  Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture , 2016, Journal of the European Mathematical Society.

[7]  B. Conrey Recent Perspectives in Random Matrix Theory and Number Theory: Families of L-functions and 1-level densities , 2005 .

[8]  Linear statistics of low-lying zeros of L-functions , 2002, math/0208230.

[9]  Wolfram Koepf,et al.  Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .

[10]  K. Soundararajan,et al.  Moments and distribution of central L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-values of quadr , 2014, Inventiones mathematicae.

[11]  S. Iyanaga On the mean value of |L(1, )| 2 for odd primitive Dirichlet characters , 1999 .

[12]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[13]  Peter Sarnak,et al.  Zeros of principal $L$-functions and random matrix theory , 1996 .

[14]  M. Murty,et al.  Mean values of derivatives of modular L-series , 1991 .

[15]  Alessandro Fazzari A WEIGHTED CENTRAL LIMIT THEOREM FOR log|ζ(1/2+it)| , 2019 .

[16]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[17]  Alessandro Fazzari,et al.  Weighted value distributions of the Riemann zeta function on the critical line , 2021, 2101.08036.

[18]  M. Jutila,et al.  On the Mean Value of L(1/2, χ ) FW Real Characters , 1981 .

[19]  A. Saha,et al.  Local spectral equidistribution for Siegel modular forms and applications , 2010, Compositio Mathematica.

[20]  Linear statistics for zeros of Riemann's zeta function , 2002, math/0208220.

[21]  D. Farmer,et al.  Autocorrelation of ratios of L-functions , 2007, 0711.0718.

[22]  M. Zirnbauer,et al.  Haar expectations of ratios of random characteristic polynomials , 2007, 0709.1215.

[23]  Henryk Iwaniec,et al.  Topics in classical automorphic forms , 1997 .

[24]  J. Brian Conrey,et al.  Mean values of L-functions and symmetry , 1999, math/9912107.

[25]  H. Iwaniec On the order of vanishing of modular $L$-functions at the critical point , 1990 .

[26]  J. Hoffstein,et al.  Nonvanishing theorems for L-functions of modular forms and their derivatives , 1990 .

[27]  C. Snyder,et al.  On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis , 1999 .

[28]  K. Soundararajan,et al.  The second moment of quadratic twists of modular L-functions , 2009, 0907.4747.

[29]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .