Top-down pathways to devices with few and single atoms placed to high precision

Solid-state devices that employ few and single atoms are emerging as a consequence of technological advances in classical microelectronics and proposals for quantum computers based on spin or charge. The fabrication of devices in both these areas requires the development of techniques for deterministic doping of silicon where few or single dopant atoms must be placed to, typically, nanometre precision. Here we discuss a top-down approach, based on deterministic ion implantation, which can potentially be used to fabricate devices intended to explore the novel challenges of designing, building and measuring solid-state devices at the single atom limit. In particular, we address the potential of fabricating more complex devices that exploit quantum coherence. We propose a prototype triple-donor device that transports electron spin qubits via the coherent tunnelling by adiabatic passage (CTAP) protocol for a scalable quantum computer. We examine theoretically the statistics of dopant placement using ion implantation by employing an analytical treatment of CTAP transport properties under hydrogenic assumptions. We evaluate the probability of fabricating proof of concept devices subject to the limitations of ion implantation. We find that the results are promising with a yield of one in six for 14keV phosphorus implanted into silicon with a target atom site spacing of 30nm with even higher yields possible for lower-energy implants. This suggests that deterministic doping is an important tool to fabricate and test near-term practical quantum coherent devices. 1 Author to whom any correspondence should be addressed.

[1]  M Y Simmons,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[2]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[3]  P. A. Ivanov,et al.  Effect of dephasing on stimulated Raman adiabatic passage (8 pages) , 2004 .

[4]  Søren Andresen,et al.  Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions , 2005 .

[5]  Xuedong Hu,et al.  Electric-field driven donor-based charge qubits in semiconductors , 2006 .

[6]  H. J. Korsch,et al.  Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models and STIRAP , 2006 .

[7]  P. Laporta,et al.  Coherent tunneling by adiabatic passage in an optical waveguide system , 2007, 0709.3050.

[8]  Andrew D. Greentree,et al.  Scaling of coherent tunneling adiabatic passage in solid-state coherent quantum systems , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[9]  R. Blick,et al.  Adiabatic steering and determination of dephasing rates in double-dot qubits , 2001, cond-mat/0104435.

[10]  Quantum-information transport to multiple receivers , 2005, quant-ph/0507181.

[11]  F. Delgado,et al.  Coherent transport through a ring of three quantum dots , 2009 .

[12]  Andrew V. Martin,et al.  Spatial coherent transport of interacting dilute Bose gases , 2008 .

[13]  H. I. Jorgensen,et al.  A triple quantum dot in a single-wall carbon nanotube. , 2008, Nano letters.

[14]  R. Levine,et al.  The Emergence of a Coupled Quantum Dot Array in a Doped Silicon Nanowire Gated by Ultrahigh Density Top Gate Electrodes , 2007 .

[15]  T. Opatrný,et al.  Conditions for vanishing central-well population in triple-well adiabatic transport , 2008, 0810.3372.

[16]  Ruhr-Universitát Bochum Concept of deterministic single ion doping with sub-nm spatial resolution , 2006 .

[17]  Emmanuel Paspalakis,et al.  Adiabatic three-waveguide directional coupler , 2006 .

[18]  A. Tünnermann,et al.  Adiabatic transfer of light via a continuum in optical waveguides. , 2009, Optics letters.

[19]  J. Cresser,et al.  Adiabatic information transport in the presence of decoherence , 2007, 0711.1686.

[20]  Electron exchange coupling for single-donor solid-state spin qubits , 2003, cond-mat/0309417.

[21]  Gerhard Klimeck,et al.  Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots , 2002 .

[22]  Scanning Transmission Ion Microscopy of Nanoscale Apertures , 2008 .

[23]  Frederic T. Chong,et al.  Toward a scalable, silicon-based quantum computing architecture , 2003 .

[24]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[25]  I. Ohdomari,et al.  A reliable method for the counting and control of single ions for single-dopant controlled devices , 2008, Nanotechnology.

[26]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[27]  R. Haug,et al.  Two-path transport measurements on a triple quantum dot , 2007, 0707.2058.

[28]  John C. Slater,et al.  Quantum Theory of Molecules and Solids , 1951 .

[29]  J. Bokor,et al.  Electron spin coherence in Si , 2006 .

[30]  Theory of the microwave spectroscopy of a phosphorus-donor charge qubit in silicon: Coherent control in the Si:P quantum-computer architecture , 2005, cond-mat/0512107.

[31]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[32]  T. Brandes,et al.  Applications of Adiabatic Passage in Solid-State Devices , 2005, cond-mat/0506412.

[33]  V. Radmilović,et al.  Formation of a few nanometer wide holes in membranes with a dual beam focused ion beam system , 2003 .

[34]  J. Mompart,et al.  Three-level atom optics via the tunneling interaction , 2004 .

[35]  H. I. Jorgensen,et al.  A Triple Quantum Dot in a Single Wall Carbon Nanotube , 2007 .

[36]  S. Tarucha,et al.  Stability diagrams of laterally coupled triple vertical quantum dots in triangular arrangement , 2009 .

[37]  S. J. Park,et al.  Integration of scanning probes and ion beams. , 2005, Nano letters.

[38]  Takahiro Shinada,et al.  Enhancing semiconductor device performance using ordered dopant arrays , 2005, Nature.

[39]  G. J. Milburn,et al.  Measuring the decoherence rate in a semiconductor charge qubit , 2003 .

[40]  G. J. Milburn,et al.  Charge-based quantum computing using single donors in semiconductors , 2004 .

[41]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[42]  R. Haug,et al.  The three dimensionality of triple quantum dot stability diagrams , 2009, 0908.0282.

[43]  Andrew D. Greentree,et al.  Coherent electronic transfer in quantum dot systems using adiabatic passage , 2004 .

[44]  A. Greentree,et al.  Interferometry using spatial adiabatic passage in quantum dot networks , 2009, 0909.4608.

[45]  A. Greentree,et al.  Electrostatically defined serial triple quantum dot charged with few electrons , 2007, cond-mat/0703450.

[46]  J. Bokor,et al.  Detection of low energy single ion impacts in micron scale transistors at room temperature , 2007, 0709.4056.

[47]  Simon J. Devitt,et al.  Information Free Quantum Bus for Generating Stabiliser States , 2007, Quantum Inf. Process..

[48]  T. Fernandez,et al.  Adiabatic light transfer via dressed states in optical waveguide arrays , 2008 .

[49]  N. Vitanov,et al.  Laser-induced population transfer by adiabatic passage techniques. , 2001, Annual review of physical chemistry.

[50]  Insoo Woo,et al.  Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET , 2008 .

[51]  C. Herring CRITIQUE OF THE HEITLER-LONDON METHOD OF CALCULATING SPIN COUPLINGS AT LARGE DISTANCES , 1962 .

[52]  Coherent population transfer in coupled semiconductor quantum dots , 2000, cond-mat/0008058.

[53]  B. Volland,et al.  Micromachined piezoresistive proximal probe with integrated bimorph actuator for aligned single ion implantation , 2006 .

[54]  Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap : Nonlinear eigenstates , Landau-Zener models , and stimulated Raman adiabatic passage , 2006 .

[55]  D. Petrosyan,et al.  Coherent population transfer in a chain of tunnel coupled quantum dots , 2006, 0706.1478.

[56]  Romain Wacquez,et al.  Compact silicon double and triple dots realized with only two gates , 2009, 1005.5686.

[57]  Michelle Y. Simmons,et al.  Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy , 2004 .

[58]  M. Korkusinski,et al.  Stability diagram of a few-electron triple dot. , 2006, Physical review letters.

[59]  L. Hollenberg,et al.  Coherent tunneling adiabatic passage with the alternating coupling scheme , 2008, 2008 International Conference on Nanoscience and Nanotechnology.

[60]  Gerhard Klimeck,et al.  Atomistic simulations of adiabatic coherent electron transport in triple donor systems , 2009, 0903.1142.

[61]  S. Longhi Light transfer control and diffraction management in circular fibre waveguide arrays , 2007 .

[62]  A. Ekert,et al.  Robust state stansfer and rotation through a spin chain via dark passage , 2007, quant-ph/0702019.

[63]  H. Salemink,et al.  Fast single-step fabrication of nanopores , 2009, Nanotechnology.

[64]  External field control of donor electron exchange at theSi∕SiO2interface , 2006, cond-mat/0612093.

[65]  Coherent Tunneling Adiabatic Passage with the alternating coupling scheme , 2008 .

[66]  J. Brugger,et al.  Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[67]  B. Sanders,et al.  Visualizing a silicon quantum computer , 2008 .

[68]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..

[69]  F. Schmidt-Kaler,et al.  Deterministic ultracold ion source targeting the Heisenberg limit. , 2009, Physical review letters.

[70]  Andrew D. Greentree,et al.  Spatial adiabatic passage in a realistic triple well structure , 2008, 0802.2398.