We investigate read-once branching programs for the
following search problem: given a Boolean
m × n matrix with m > n, find either an all-zero row, or two
1’s in some column. Our primary motivation is that this models
regular resolution proofs of the pigeonhole principle
% MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!
% MathType!MTEF!2!1!+-
% feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn
% 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu
% HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbnr
% fifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9
% pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFv
% e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGqbGa
% amisaiaadcfadaqhaaWcbaGaamOBaaqaaiaad2gaaaaaaa!483C!$$
PHP^{m}_{n}
$$, and that for
m >
n2
no lower bounds are known for the length of such proofs. We
prove exponential lower bounds (for arbitrarily large
m!) if we further restrict
this model by requiring the branching program
either to finish one row of
queries before asking queries about another row (the
row model)
or put the dual column
restriction (the column
model).Then we investigate a special class of resolution proofs
for
% MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!
% MathType!MTEF!2!1!+-
% feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn
% 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu
% HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbnr
% fifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9
% pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFv
% e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGqbGa
% amisaiaadcfadaqhaaWcbaGaamOBaaqaaiaad2gaaaaaaa!483C!$$
PHP^{m}_{n}
$$ that operate with
positive clauses of rectangular shape; we call this fragment the
rectangular calculus. We show
that all known upper bounds
on the size of resolution proofs of
% MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!
% MathType!MTEF!2!1!+-
% feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn
% 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu
% HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbnr
% fifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9
% pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFv
% e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGqbGa
% amisaiaadcfadaqhaaWcbaGaamOBaaqaaiaad2gaaaaaaa!483C!$$
PHP^{m}_{n}
$$ actually give rise to
proofs in this calculus and, inspired by this fact, also give a
remarkably simple “rectangular” reformulation of the
Haken–Buss–Turán lower bound for the case m ≪
n2. Finally
we show that the rectangular calculus is equivalent to the
column model on the one hand, and to transversal calculus on the other hand,
where the latter is a natural proof system for estimating from
below the transversal size of set families. In particular, our
exponential lower bound for the column model translates both to
the rectangular and transversal calculi.
[1]
Hilary Putnam,et al.
A Computing Procedure for Quantification Theory
,
1960,
JACM.
[2]
J. A. Robinson,et al.
A Machine-Oriented Logic Based on the Resolution Principle
,
1965,
JACM.
[3]
Colin McDiarmid,et al.
Determining the Chromatic Number of a Graph
,
1979,
SIAM J. Comput..
[4]
Samuel R. Buss.
Polynomial Size Proofs of the Propositional Pigeonhole Principle
,
1987,
J. Symb. Log..
[5]
Alasdair Urquhart,et al.
Formal Languages]: Mathematical Logic--mechanical theorem proving
,
2022
.
[6]
Samuel R. Buss,et al.
Resolution Proofs of Generalized Pigeonhole Principles
,
1988,
Theor. Comput. Sci..
[7]
Endre Szemerédi,et al.
Many hard examples for resolution
,
1988,
JACM.
[8]
Alexander A. Razborov,et al.
Lower Bounds for Deterministic and Nondeterministic Branching Programs
,
1991,
FCT.
[9]
Jan Krajícek,et al.
Bounded arithmetic, propositional logic, and complexity theory
,
1995,
Encyclopedia of mathematics and its applications.
[10]
Toniann Pitassi,et al.
Simplified and improved resolution lower bounds
,
1996,
Proceedings of 37th Conference on Foundations of Computer Science.
[11]
Stasys Jukna.
Exponential lower bounds for semantic resolution
,
1996,
Proof Complexity and Feasible Arithmetics.
[12]
Samuel R. Buss,et al.
Resolution and the Weak Pigeonhole Principle
,
1997,
CSL.