Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties.

Photocorrosion stable WO(3) nanowire arrays are synthesized by a solvothermal technique on fluorine-doped tin oxide coated glass. WO(3) morphologies of hexagonal and monoclinic structure, ranging from nanowire to nanoflake arrays, are tailored by adjusting solution composition with growth along the (001) direction. Photoelectrochemical measurements of illustrative films show incident photon-to-current conversion efficiencies higher than 60% at 400 nm with a photocurrent of 1.43 mA/cm(2) under AM 1.5G illumination. Our solvothermal film growth technique offers an exciting opportunity for growth of one-dimensional metal oxide nanostructures with practical application in photoelectrochemical energy conversion.