Metal–Support Interaction: Group VIII Metals and Reducible Oxides

Publisher Summary This chapter discusses the interaction of small metal particles with reducible oxide supports, and focuses on Group VIII (or Group 8-10) metals supported on TiO 2 . The strong suppression in catalytic activity and chemisorption capacity observed on TiO 2 -supported catalysts after reduction at high temperatures can be, at least partially, explained by a geometric blocking of sites by TiO 2 species. The dominant mechanism of formation of TiO 2 species on metal particles is migration during the high-temperature reduction, but some deposition of metal precursors during preparation may also occur. This picture finds an analog in the structure of the bimetallic clusters observed in Group VIII-Group Ib catalysts, in the sense that the structure sensitive reactions, e.g., alkane hydrogenolysis, are most affected whereas only modest effects are observed for structureinsensitive reactions, e.g., hydrogenation-dehydrogenation. The migration of reduced species from the support is accompanied by the formation of metal-Ti bonds, which provide the thermodynamic driving force for the migration. The metal-support bonding is not identical to that in the intermetallic compounds because of the associated oxygen that imparts cationic character to the Ti and Group VIII metal partner; in other words, it may be analogous to the Group VIII-Ti bonding that persists on intermetallic compounds surfaces after oxygen chemisorption.

[1]  R. Prins,et al.  Hydrogenation of carbon monoxide over vanadium oxide-promoted rhodium catalysts , 1987 .

[2]  A. Bastein,et al.  Selectivity of Rh catalysts in the syngas reactions. On the role of supports and promoters , 1987 .

[3]  P. Turlier,et al.  Evidence of a strong metal-support interaction in zirconia-supported nickel catalysts , 1982 .

[4]  Geoffrey I. Webb,et al.  Strong metal-support interactions , 1983 .

[5]  Y. Yermakov Supported Catalysts Obtained by Interaction of Organometallic Compounds of Transition Elements with Oxide Supports , 1976 .

[6]  F. Solymosi,et al.  Decomposition of formic acid on supported Rh catalysts , 1985 .

[7]  D. Resasco,et al.  Comparison of hydrogenation and hydrogenolysis on unsupported and silica-supported Rh–V2O3 and Pt–V2O3 , 1987 .

[8]  A. Borgna,et al.  On the sulfur-aided metal-support interaction in PtAl2O3Cl catalysts , 1987 .

[9]  R. Burch,et al.  The reversibility of strong metal-support interactions. A comparison of Pt/TiO2 and Rh/TiO2 catalysts , 1986 .

[10]  H. Miessner,et al.  The SMSI effect in the system RhTiO2 at high metal loading , 1985 .

[11]  G. Denotter Metal-support interaction in Pt/Al2O3 catalysts , 1978 .

[12]  S. Wanke,et al.  Metal-Support Interactions in the Pt/MgO System , 1982 .

[13]  M. Vannice,et al.  Metal-support effects on the activity and selectivity of Ni catalysts in COH2 synthesis reactions , 1979 .

[14]  P. Ross,et al.  Platinum-titanium alloy formation from high-temperature reduction of a titania-impregnated platinum catalyst: implications for strong metal-support interaction , 1986 .

[15]  R. Gorte,et al.  A comparison of titania overlayers on Pt, Pd and Rh , 1985 .

[16]  K. Kunimori,et al.  SUPPRESSION OF CO HYDROGENATION ACTIVITY OF Pt/TiO2 CATALYST BY THE SMSI TREATMENT AND ITS RECOVERY DURING THE REACTION , 1985 .

[17]  J. Katzer,et al.  The role of the support in CO hydrogenation selectivity of supported rhodium , 1981 .

[18]  E. I. Ko,et al.  Preparation, reduction, and chemisorption behavior of niobia-supported nickel catalysts , 1983 .

[19]  M. Vannice,et al.  Direct measurements of heats of adsorption on platinum catalysts: III. Potential errors with differential scanning calorimeters , 1986 .

[20]  P. Mériaudeau,et al.  Metal-support interaction. Catalytic properties of Ti02-supported platinum, iridium, and rhodium , 1982 .

[21]  M. Mundschau,et al.  Diffusion and adsorption of titanium oxide on platinum as related to strong metal―support interactions , 1987 .

[22]  J. Gland,et al.  Carbon monoxide adsorption on the kinked Pt(321) surface , 1981 .

[23]  Michel Boudart,et al.  Kinetics of Heterogeneous Catalytic Reactions , 1984 .

[24]  D. Resasco,et al.  Dispersion Effects on Alkane Hydrogenolysis over Rhodium Supported on Titanium Oxide , 1982 .

[25]  G. Haller,et al.  EXAFS evidence for direct metal-metal bonding in reduced rhodium/titania catalysts , 1986 .

[26]  D. Resasco,et al.  A model of metal-oxide support interaction for Rh on TiO2 , 1983 .

[27]  R. Burch,et al.  Enhanced activity of Pd/TiO2 catalysts for the CO/H2 reaction in the absence of strong metal-support interactions (SMSI) , 1984 .

[28]  J. L. Carter,et al.  Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys , 1972 .

[29]  S. Moon,et al.  SMSI effects on CO adsorption and hydrogenation on Pt catalysts: I. Infrared spectra of adsorbed CO prior to and during reaction conditions , 1983 .

[30]  J. Lercher,et al.  The effect of impurities on chemisorption and activity of MgO-supported Rh , 1984 .

[31]  P. Ross,et al.  Structure and chemisorptive properties of the Pt3Ti surface , 1986 .

[32]  V. Henrich,et al.  Chemisorption of H 2 O on the surface of Ti 2 O 3 : Role of d electrons and ligand geometry , 1982 .

[33]  J. Sanz,et al.  Influence of the hydrogen uptake by the support on metal-support interactions in catalysts. Comparison of the rhodium/titanium dioxide and rhodium/strontium titanate (SrTiO3) systems , 1985 .

[34]  H. Praliaud,et al.  Evidence of a strong metal-support interaction and of NiSi alloy formation in silica-supported nickel catalysts , 1981 .

[35]  D. Belton,et al.  Metal-support interactions on rhodium and platinum/titanium dioxide model catalysts , 1984 .

[36]  S. Naito,et al.  Nature of SMSI effect on carbon monoxide + molecular hydrogen reaction over supported rhodium catalysts , 1985 .

[37]  D. Dwyer,et al.  The interaction of CO and O2 with the (111) surface of Pt3Ti , 1986 .

[38]  E. V. Broekhoven,et al.  On the Strong Metal-Support Interactions effects in the reactions of hydrocarbons , 1985 .

[39]  J. Dumesic,et al.  Metal-support interactions between iron and titania for catalysts prepared by thermal decomposition of iron pentacarbonyl and by impregnation , 1983 .

[40]  G. Raupp,et al.  Effect of titania surface species on the chemisorption of CO and H2 on polycrystalline nickel , 1984 .

[41]  D. Resasco,et al.  Characterization of the interaction between rhodium and titanium oxide by XPS , 1982 .

[42]  A. Anderson,et al.  CO adsorption on (111) and (100) surfaces of the Pt3Ti alloy: Evidence for parallel binding and strong activation of CO , 1986 .

[43]  W. Marshall,et al.  The electronic structure of the metals of the first transition period , 1958 .

[44]  F. Dautzenberg State of dispersion of platinum in alumina-supported catalysts , 1978 .

[45]  W. Sachtler,et al.  EXAFS studies of rhodium- and rhodium-chromium-NaY zeolite catalysts: evidence for direct bonding between metal particles and anchoring ions , 1986 .

[46]  G. Djéga-Mariadassou,et al.  Influence of support acidity and Ce3+ additives on the reactivity of nickel particles highly dispersed on various oxide supports , 1985 .

[47]  G. Froment,et al.  Effects of Residual Hydrogen on the Catalytic Properties of Metals , 1982 .

[48]  E. I. Ko,et al.  The effect of crystallite size on the onset of metal–support interactions for titania-supported nickel catalysts , 1982 .

[49]  K. Kunimori,et al.  The Interaction of H2 with Pt/Al2O3 and Pt/TiO2 Catalysts at High Temperatures , 1983 .

[50]  P. Mériaudeau,et al.  Catalytic properties of supported rhodium in the CO + H2 reaction: Influence of the support on the selectivity , 1982 .

[51]  R. Prins,et al.  Structure of rhodium/titania in the normal and the SMSI state as determined by extended x-ray absorption fine structure and high-resolution transmission electron microscopy , 1988 .

[52]  M. S. Spencer Effect of potassium compounds on strong metal-support interactions in platinum/titanium dioxide catalysts , 1984 .

[53]  D. Sayers,et al.  X-Ray absorption edge and extended x-ray absorption fine structure studies of PtTiO2 catalysts , 1983 .

[54]  M. Vannice,et al.  A model for the metal-support effect enhancing carbon monoxide hydrogenation rates over platinum-titania catalysts , 1984 .

[55]  V. Henrich The surfaces of metal oxides , 1985 .

[56]  T. Fischer,et al.  Electronic structure ofNi3Ti , 1979 .

[57]  D. Resasco,et al.  Novel rhodium/titania and iridium/titania catalysts for n-butane isomerization and dehydrogenation , 1984 .

[58]  B. Delmon,et al.  PREPARATION OF CATALYSTS IV , 1987 .

[59]  R. Gorte,et al.  Evidence for diffusion of a partially oxidized titanium species into bulk platinum , 1984 .

[60]  R. Baker,et al.  Electron microscopy of supported metal particles II. Further studies of Pt/TiO , 1979 .

[61]  J. Herrmann,et al.  A microcalorimetric study of metal-support interaction in the Pt/TiO2 system , 1987 .

[62]  S. Ferrer,et al.  The strong metal-support interaction (SMSI) in Pt-TiO2 model catalysts. A new CO adsorption state on Pt-Ti atoms , 1986 .

[63]  J. Dumesic,et al.  A study of the platinum-titanium oxide system for the hydrogenation of graphite: ramifications of strong metal-support interactions , 1986 .

[64]  G. Bond,et al.  Hydrogenolysis of propane, n-butane, and isobutane over variously pretreated ruthenium/titanium dioxide catalysts , 1986 .

[65]  S. R. Morris,et al.  Support Effects in the Ruthenium-Catalysed Hydrogenation of Carbon Monoxide , 1982 .

[66]  F. Solymosi Importance of the Electric Properties of Supports in the Carrier Effect , 1968 .

[67]  M. Vannice,et al.  The influence of the support on the catalytic behavior of ruthenium in COH2 synthesis reactions , 1980 .

[68]  B. Sexton XPS investigation of strong metal-support interactions on Group IIIa–Va oxides , 1982 .

[69]  E. I. Ko,et al.  Ethane hydrogenolysis studies of TiO2-supported group VIII metal catalysts , 1981 .

[70]  R. Prins,et al.  Structure of rhodium in an ultradispersed Rh/Al2O3 catalyst as studied by EXAFS and other techniques , 1985 .

[71]  B. Imelik,et al.  Metal-support and metal-additive effects in catalysis : proceedings of an international symposium , 1982 .

[72]  P. Mériaudeau,et al.  Further Investigation on Metal-Support Interaction: TiO2, CeO2, SiO2 Supported Platinum Catalysts , 1982 .

[73]  P. Weisz Polyfunctional Heterogeneous Catalysis , 1962 .

[74]  Alexis T. Bell,et al.  Studies of the interactions of H2 and CO with Pd/TiO2 and TiO2-promoted Pd/SiO2 , 1986 .

[75]  K. Kunimori,et al.  Metal-support interaction in alumina-supported Pt catalysts , 1983 .

[76]  E. Prestridge,et al.  Ultradispersed rhodium rafts: Their existence and topology , 1979 .

[77]  S. J. Tauster Strong metal-support interactions , 1986 .

[78]  M. Kelley,et al.  In situ tem and iss studies of supported metal ‘SMSI’ catalysts , 1983 .

[79]  J. A. Pask,et al.  Kinetics of the Anatase‐Rutile Transformation , 1965 .

[80]  G. Diakun,et al.  Near-edge X-ray absorption spectra for metallic Cu and Mn , 1981, Nature.

[81]  L. Bonneviot,et al.  EPR characterization of Ti3+ ions at the metal-support interface in Pt/TiO2 catalysts , 1988 .

[82]  J. Bart Near-Edge X-Ray Absorption Spectroscopy in Catalysis , 1986 .

[83]  Tom Huizinga,et al.  XPS Investigations of Al2O3 and TiO2 Supported Pt , 1982 .

[84]  V. Ponec On Some Real and Apparent Carrier Effects in Catalysis by Metals , 1982 .

[85]  M. Vannice,et al.  SMSI effects on CO adsorption and hydrogenation on Pt catalysts: Part II. Influence of support and crystallite size on the kinetics of methanation , 1983 .

[86]  B. Freitag,et al.  Untersuchungen an Metallkatalysatoren. XXVIII [1]. Zur Aktivität und Selektivität von Nickel/Träger‐Katalysatoren , 1981 .

[87]  Yip-Wah Chung,et al.  Strong metal-support interaction in NiTi02: Auger and vibrational spectroscopy evidence for the segregation of TiOx (x ≈-1) on Ni and its effects on CO chemisorption , 1984 .

[88]  F. G. Gault,et al.  Reactions of hexanes, unlabeled and Labeled with 13C, on alumina-supported palladium-gold and platinum-gold alloys , 1975 .

[89]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .

[90]  A. Anderson,et al.  Molecular orbital study of CO chemisorption on a Pt(111) surface in the presence of potassium , 1983 .

[91]  Alexis T. Bell,et al.  A study of the interactions of NO with RhTiO2 and TiO2-promoted RhTiO2 , 1986 .

[92]  Yip-Wah Chung,et al.  MECHANISM OF STRONG METAL-SUPPORT INTERACTION IN Ni/TiO2 , 1984 .

[93]  R. A. Santen,et al.  Surface Composition and Selectivity of Alloy Catalysts , 1977 .

[94]  Raymond J. Gorte,et al.  Characterization of oxide impurities on Pt and their effect on the adsorption of CO and H2 , 1985 .

[95]  C. Rice,et al.  The oxidation state of dispersed Rh on Al2O3 , 1981 .

[96]  R. Prins,et al.  Preparation and characterization of vanadium oxide promoted rhodium catalysts , 1987 .

[97]  R. Baker,et al.  Electron microscopy of supported metal particles: III. The role of the metal in an SMSI interaction , 1983 .

[98]  A. Magnéli Structure of β-Tungsten Oxide , 1950, Nature.

[99]  G. J. Clark,et al.  Strong metal-support interactions for Pt and Rh on Al2O3 and TiO2: Application of nuclear backscattering spectrometry , 1983 .

[100]  M. Primet Infrared study of CO chemisorption on zeolite and alumina supported rhodium , 1978 .

[101]  S. C. Fung,et al.  Strong metal-support interactions: Occurrence among the binary oxides of groups IIA–VB , 1978 .

[102]  S. D. Cameron,et al.  Surface modification of platinum by titanium dioxide overlayers: A case of simple site blocking , 1985 .

[103]  C. Lund,et al.  A study of the nickel-titanium oxide interaction , 1984 .

[104]  G. Somorjai,et al.  The effects of titania and alumina overlayers on the hydrogenation of CO over rhodium , 1987 .

[105]  G. Somorjai,et al.  The influence of TiOx deposits on a polycrystalline Rh foil on CO adsorption and desorption , 1986 .

[106]  T. Baird,et al.  Preparation of supported platinum-gold catalysts and alkane reactions on selected platinum and platinum-gold supported “clusters” , 1984 .

[107]  V. Henrich,et al.  Electronic interactions in the rhodium/TiO2 system , 1988 .

[108]  P. Ross,et al.  Valence and core state modifications in Pt3Ti , 1984 .

[109]  Alexis T. Bell,et al.  Influence of support composition on the reduction of nitric oxide over rhodium catalysts , 1986 .

[110]  K. Foger Reactions of n-butane and neopentane on titania-supported iridium catalysts , 1982 .

[111]  G. Schwab Metal electrons and catalysis , 1946 .

[112]  R. Gorte,et al.  A characterization of thin titania layers deposited on polycrystalline Pt using ISS and ESCA , 1987 .

[113]  Alexis T. Bell,et al.  Effect of promoting Rh/SiO2 with TiO2 on the reduction of nitric oxide , 1986 .

[114]  M. Vannice,et al.  Direct measurements of heats of adsorption on platinum catalysts: II. CO on Pt dispersed on SiO2, Al2O3, SiO2Al2O3, and TiO2 , 1985 .

[115]  G. Dresselhaus,et al.  Observation of two-dimensional phases associated with defect states on the surface of TiO/sub 2/. [Ar ion bombardment] , 1976 .

[116]  G. Schwab Electronics of Supported Catalysts , 1979 .

[117]  V. Ponec,et al.  Methanation of carbon monoxide on nickel and nickel-copper alloys , 1976 .

[118]  R. Burch,et al.  Strong metal-support interactions in nickel/titania catalysts: The importance of interfacial phenomena , 1982 .

[119]  D. Resasco,et al.  Indirect effect of the strong metal-support interaction on the metal-metal inter-action in Rh-Ag/TiO2 catalysts , 1983 .

[120]  R. M. Lambert,et al.  Single crystal modelling of the SMSI phenomenon: Structure, composition, electronic effects and CO chemisorption at the Ru(0001)/TiOx interface , 1988 .

[121]  V. Henrich,et al.  SMSI in Rh/TiO2 model catalysts: Evidence for oxide migration , 1984 .

[122]  G. Raupp,et al.  Effect of varying titania surface coverage on the chemisorptive behavior of nickel , 1985 .

[123]  P. Turlier,et al.  Evidence for a weak metal-support interaction in alumina-supported nickel catalysts , 1982 .

[124]  C. Bennett,et al.  Kinetic and Moessbauer study of the CO/H reaction over Fe/TiO reduced at various temperatures , 1984 .

[125]  D. Resasco,et al.  X-ray absorption near-edge structure evidence for direct metal-metal bonding and electron transfer in reduced rhodium/titania catalysts , 1988 .

[126]  M. Vannice,et al.  Benzene hydrogenation over iron: II. Reaction model over unsupported and supported catalysts , 1983 .

[127]  D. Resasco,et al.  Different strong metal-support interaction effects on rhodium/titanium dioxide and platinum/titanium dioxide catalysts , 1986 .

[128]  M. Vannice Titania-supported metals as CO hydrogenation catalysts , 1982 .

[129]  U. Bardi,et al.  An investigation by angular resolved X-ray photoelectron spectroscopy of strong metal-support interaction (SMSI) in the Pt/TiO2 system , 1988 .

[130]  G. Raupp,et al.  Effects of titania on the coadsorption of H2 and CO on nickel surfaces: Consequences for understanding methanation over titania-supported nickel catalysts , 1985 .

[131]  R. Baker,et al.  Electron microscopy of supported metal particles: I. Behavior of Pt on titanium oxide, aluminum oxide, silicon oxide, and carbon , 1979 .

[132]  Alexis T. Bell,et al.  Electron microscopy study of the interactions of rhodium with titania , 1985 .

[133]  V. Henrich,et al.  Surface electronic structure of corundum transition-metal oxides: Ti 2 O 3 , 1982 .