Incremental assignment problem

In this paper we introduce the incremental assignment problem. In this problem, a new pair of vertices and their incident edges are added to a weighted bipartite graph whose maximum-weighted matching is already known, and the maximum-weighted matching of the extended graph is sought. We propose an O(|V|^2) algorithm for the problem.

[1]  Ming-Yang Kao,et al.  A Decomposition Theorem for Maximum Weight Bipartite Matchings , 2000, SIAM J. Comput..

[2]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[3]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[4]  Harold N. Gabow,et al.  Data structures for weighted matching and nearest common ancestors with linking , 1990, SODA '90.

[5]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[6]  Ravindra K. Ahuja,et al.  Chapter IV Network flows , 1989 .

[7]  Rainer E. Burkard,et al.  Selected topics on assignment problems , 2002, Discret. Appl. Math..

[8]  W. Pulleyblank Matchings and extensions , 1996 .

[9]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[10]  Harold N. Gabow,et al.  An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs , 1976, JACM.

[11]  Zvi Galil,et al.  Efficient Implementation of Graph Algorithms Using Contraction , 1984, FOCS.

[12]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[13]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[14]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[15]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[16]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[17]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[18]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[19]  ZVI GALIL,et al.  Efficient algorithms for finding maximum matching in graphs , 1986, CSUR.

[20]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[21]  Alan Holland,et al.  Fast Vickrey-Pricing for the Assignment Problem , 2003 .

[22]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[23]  Ismail Hakki Toroslu Personnel assignment problem with hierarchical ordering constraints , 2003, Comput. Ind. Eng..

[24]  Erol Gelenbe,et al.  Task Assignment and Transaction Clustering Heuristics for Distributed Systems , 1997, Inf. Sci..

[25]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[26]  N GabowHarold An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs , 1976 .

[27]  John D. Lamb A note on the weighted matching with penalty problem , 1998, Pattern Recognit. Lett..

[28]  WILLIAM C. K. YEN,et al.  An Optimal Algorithm for Solving the Searchlight Guarding Problem on Weighted Interval Graphs , 1997, Inf. Sci..

[29]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[30]  Donald Goldfarb Efficient dual simplex algorithms for the assignment problem , 1985, Math. Program..