Stabilization by Sparse Controls for a Class of Semilinear Parabolic Equations

Stabilization problems for parabolic equations with polynomial nonlinearities are investigated in the context of an optimal control formulation with a sparsity enhancing cost functional. This formulation allows that the optimal control completely shuts down once the trajectory is sufficiently close to a stable steady state. Such a property is not present for commonly chosen control mechanisms. To establish these results it is necessary to develop a function space framework for a class of optimal control problems posed on infinite time horizons, which is otherwise not available.

[1]  Karl Kunisch,et al.  Parabolic Control Problems in Measure Spaces with Sparse Solutions , 2013, SIAM J. Control. Optim..

[2]  Fredi Tröltzsch,et al.  Second Order and Stability Analysis for Optimal Sparse Control of the FitzHugh-Nagumo Equation , 2015, SIAM J. Control. Optim..

[3]  M. Rojas-Medar,et al.  Theoretical analysis and control results for the Fitzhugh-Nagumo equation , 2008 .

[4]  Karl Kunisch,et al.  Measure Valued Directional Sparsity for Parabolic Optimal Control Problems , 2014, SIAM J. Control. Optim..

[5]  Viorel Barbu,et al.  Internal stabilization of semilinear parabolic systems , 2003 .

[6]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[7]  Roland Herzog,et al.  Directional Sparsity in Optimal Control of Partial Differential Equations , 2012, SIAM J. Control. Optim..

[8]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[9]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[10]  Karl Kunisch,et al.  Parabolic control problems in space-time measure spaces , 2016 .

[11]  Feedback stabilization of semilinear heat equations. , 2003 .

[12]  Karl Kunisch,et al.  Optimal control approach to termination of re-entry waves in cardiac electrophysiology , 2013, Journal of mathematical biology.

[13]  F. Schlögl,et al.  A characteristic critical quantity in nonequilibrium phase transitions , 1983 .

[14]  Roland Herzog,et al.  Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations , 2017 .

[15]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.