Counterion design of TEMPO-nanocellulose used as filler to improve properties of hydrogenated acrylonitrile-butadiene matrix

Abstract A nanocellulose containing carboxylate groups was prepared from cellulose by catalytic oxidation with the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). The aqueous TEMPO-oxidized cellulose nanofibrils (TOCNs) with lithium (Li+), sodium (Na+) or tetraalkylammonium (+NR4) counterions (TOCN-X) were mixed with aqueous hydrogenated acrylonitrile–butadiene rubber (H-NBR) latex, and TOCN-X/H-NBR composite films were prepared by casting and drying. All of the composite films are transparent and flexible. The TOCN-Na/H-NBR (TOCN/H-NBR = 5/100, w/w) composite film has a high Young's modulus of ∼63 MPa, a high storage elastic modulus of 112 MPa at 25 °C, and a low coefficient of thermal expansion (CTE) of 122 ppm/K, whereas the neat H-NBR film has the values o 5.3 MPa, 2 MPa, and 2660 ppm/K, respectively. Microscopy images show that the hydrophilic TOCN-Na elements form grid-like network structures surrounding the hydrophobic H-NBR latex particles. Thus, the hydrophilic TOCN-Na elements cannot penetrate into hydrophobic H-NBR molecules, and the TOCN-Na elements are not homogeneously distributed in the TOCN/H-NBR composite films prepared under the conditions used in this study. Nevertheless, clear improvement of thermal and mechanical properties is achieved for the TOCN/H-NBR composite films at TOCN/H-NBR weight ratios of 1–5/100. TOCN-Li/H-NBR film has the highest Young's modulus, while the hydrophobic TOCN-NR4/H-NBR films have low CTE values

[1]  E. J. Foster,et al.  Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals--processing matters. , 2014, ACS applied materials & interfaces.

[2]  Akira Isogai,et al.  Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. , 2014, Angewandte Chemie.

[3]  C. Nah,et al.  Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending , 2006 .

[4]  Fei Deng,et al.  Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites. , 2011, ACS nano.

[5]  A. Isogai,et al.  Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. , 2012, Biomacromolecules.

[6]  Qi Zhou,et al.  Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals , 2011 .

[7]  Akira Isogai,et al.  An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. , 2013, Biomacromolecules.

[8]  J. Karger‐Kocsis,et al.  Natural rubber-based nanocomposites by latex compounding with layered silicates , 2003 .

[9]  A. Isogai,et al.  Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. , 2012, Biomacromolecules.

[10]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[11]  T. Iwata,et al.  Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. , 2013, Biomacromolecules.

[12]  A. Isogai,et al.  Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces. , 2014, Biomacromolecules.

[13]  Salmon M. Kalkhoran,et al.  Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites† , 2011 .

[14]  Akira Isogai,et al.  TEMPO-oxidized cellulose nanofibers. , 2011, Nanoscale.

[15]  A. Dufresne,et al.  Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites , 2010 .

[16]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[17]  Akira Isogai,et al.  Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. , 2009, Biomacromolecules.

[18]  Redouane Borsali,et al.  Rodlike Cellulose Microcrystals: Structure, Properties, and Applications , 2004 .

[19]  L. Berglund,et al.  Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate. , 2015, ACS applied materials & interfaces.

[20]  Y. Fukahori,et al.  Stress analysis of elastomeric materials at large extensions using the finite element method , 1993, Journal of Materials Science.

[21]  C. Bucknall,et al.  Stress-whitening in high-impact polystyrenes , 1965 .

[22]  M. Dresselhaus,et al.  Extreme‐Performance Rubber Nanocomposites for Probing and Excavating Deep Oil Resources Using Multi‐Walled Carbon Nanotubes , 2008 .

[23]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[24]  A. Isogai,et al.  Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials , 2011 .

[25]  J. Karger‐Kocsis,et al.  Controlling the Deintercalation in Hydrogenated Nitrile Rubber (HNBR)/Organo-Montmorillonite Nanocomposites by Curing with Peroxide , 2005 .

[26]  W. Brittain,et al.  Bottom-up synthesis of PS–CNF nanocomposites , 2005 .

[27]  L. A. Pothan,et al.  Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex , 2013, Cellulose.

[28]  K. Haraguchi,et al.  Polymer–Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency , 2006 .

[29]  A. Dufresne,et al.  Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites , 2010 .

[30]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[31]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[32]  M. Sumita,et al.  Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites , 1996 .

[33]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[34]  D. K. Yi,et al.  Carbon Nanotube Network Structuring Using Two‐Dimensional Colloidal Crystal Templates , 2008 .

[35]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[36]  Akira Isogai,et al.  Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials , 2013, Journal of Wood Science.

[37]  A. Isogai,et al.  Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions , 2016 .

[38]  Qi Zhou,et al.  Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry. , 2015, ACS applied materials & interfaces.

[39]  J. Putaux,et al.  Polymer/Laponite Composite Latexes: Particle Morphology, Film Microstructure, and Properties , 2007 .

[40]  Meng-jiao Wang Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates , 1998 .

[41]  T. Iwata,et al.  Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites , 2014 .

[42]  Y. Ikeda,et al.  The Effect of Bis(3-Triethoxysilylpropyl) Tetrasulfide on Silica Reinforcement of Styrene-Butadiene Rubber , 1998 .

[43]  A. Isogai,et al.  Bulky quaternary alkylammonium counterions enhance the nanodispersibility of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose in diverse solvents. , 2014, Biomacromolecules.