Empirical Likelihood Estimation for Population Pharmacokinetic Study Based on Generalized Linear Model

To obtain efficient estimation of parameters is a major objective in population pharmacokinetic study. In this paper, we propose an empirical likelihood-based method to analyze the population pharmacokinetic data based on the generalized linear model. A nonparametric version of the Wilk's theorem for the limiting distributions of the empirical likelihood ratio is derived. Simulations are conducted to demonstrate the accuracy and efficiency of empirical likelihood method. An application illustrating our methods and supporting the simulation study results is presented. The results suggest that the proposed method is feasible for population pharmacokinetic data.

[1]  Suojin Wang,et al.  Generalized empirical likelihood methods for analyzing longitudinal data , 2010, Biometrika.

[2]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[3]  Bing-Yi Jing,et al.  Two-sample empirical likelihood method , 1995 .

[4]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[5]  Gang Li Nonparametric Likelihood Ratio Estimation of Probabilities for Truncated Data , 1995 .

[6]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[7]  J. Wakefield NON-LINEAR REGRESSION MODELLING , 2004 .

[8]  C. Morris Natural Exponential Families with Quadratic Variance Functions , 1982 .

[9]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[10]  Chen Xia Empirical Likelihood for Generalized Linear Models with Missing Data , 2013 .

[11]  E. Vonesh,et al.  Non-linear models for the analysis of longitudinal data. , 1992, Statistics in medicine.

[12]  J. Nelder,et al.  An extended quasi-likelihood function , 1987 .

[13]  Adrian F. M. Smith,et al.  Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .

[14]  Fang-Rong Yan,et al.  Bayesian Inference for Generalized Linear Mixed Model Based on the Multivariate t Distribution in Population Pharmacokinetic Study , 2013, PloS one.

[15]  Anna Clara Monti Empirical likelihood confidence regions in time series models , 1997 .

[16]  L. Sansom,et al.  Intraindividual variability in theophylline pharmacokinetics: Statistical verification in 39 of 60 healthy young adults , 1982, Journal of Pharmacokinetics and Biopharmaceutics.

[17]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[18]  J. F. Lawless,et al.  Estimating equations, empirical likelihood and constraints on parameters† , 1995 .

[19]  Lixing Zhu,et al.  Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data , 2007 .

[20]  Jon Wakefield,et al.  Gamma Generalized Linear Models for Pharmacokinetic Data , 2008, Biometrics.

[21]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[22]  Marie Davidian,et al.  Nonlinear Models for Repeated Measurement Data , 1995 .

[23]  Lewis B. Sheiner,et al.  Estimation of population characteristics of pharmacokinetic parameters from routine clinical data , 1977, Journal of Pharmacokinetics and Biopharmaceutics.