Time reversal through a solid–liquid interface and super-resolution

We present numerical computations that reproduce the time-reversal experiments of Draeger et al (Draeger C, Cassereau D and Fink M 1998 Appl. Phys. Lett. 72 1567–9), where ultrasound elastic waves are time-reversed back to their source with a time-reversal mirror in a fluid adjacent to the solid. We also show numerically that multipathing caused by random inhomogeneities improves the focusing of the back-propagated elastic waves beyond the diffraction limit seen previously in acoustic wave propagation (Dowling D R and Jackson D R 1990 J. Acoust. Soc. Am. 89 171–81, Dowling D R and Jackson D R 1992 J. Acoust. Soc. Am. 91 3257–77, Fink M 1999 Sci. Am. 91–7, Kuperman W A, Hodgkiss W S, Song H C, Akal T, Ferla C and Jackson D R 1997 J. Acoust. Soc. Am. 103 25–40, Derode A, Roux P and Fink M 1995 Phys. Rev. Lett. 75 4206–9), which is called super-resolution. A theoretical explanation of the robustness of super-resolution is given, along with several numerical computations that support this explanation (Blomgren P, Papanicolaou G and Zhao H 2002 J. Acoust. Soc. Am. 111 238–48). Time reversal with super-resolution can be used in non-destructive testing and, in a different way, in imaging with active arrays (Borcea L, Papanicolaou G, Tsogka C and Berryman J 2002 Inverse Problems 18 1247–79).

[1]  D. Jackson,et al.  Phase conjugation in underwater acoustics , 1991 .

[2]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[3]  Mathias Fink,et al.  ACOUSTIC TIME REVERSAL WITH MODE CONVERSION AT A SOLID-FLUID INTERFACE , 1998 .

[4]  Roux,et al.  Robust Acoustic Time Reversal with High-Order Multiple Scattering. , 1995, Physical review letters.

[5]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[6]  Mathias Fink,et al.  Theory of the time-reversal process in solids , 1997 .

[7]  D. Jackson,et al.  Narrow‐band performance of phase‐conjugate arrays in dynamic random media. , 1991 .

[8]  James R Ison,et al.  The attention filter for tones in noise has the same shape and effective bandwidth in the elderly as it has in young listeners. , 2002, The Journal of the Acoustical Society of America.

[9]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[10]  Chrysoula Tsogka,et al.  Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .

[11]  Eliane Bécache,et al.  Éléments finis mixtes et condensation de masse en élastodynamique linéaire. (I) Construction , 1997 .

[12]  W. Kuperman,et al.  Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror , 1998 .

[13]  George Papanicolaou,et al.  Statistical Stability in Time Reversal , 2004, SIAM J. Appl. Math..

[14]  M. Fink Time reversed acoustics , 2001 .

[15]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[16]  Hongkai Zhao,et al.  Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.

[17]  Patrick Joly,et al.  FICTITIOUS DOMAINS, MIXED FINITE ELEMENTS AND PERFECTLY MATCHED LAYERS FOR 2-D ELASTIC WAVE PROPAGATION , 2001 .