Heterostructure Films of SiO2 and HfO2 for High-Power Laser Optics Prepared by Plasma-Enhanced Atomic Layer Deposition

,

[1]  A. Tünnermann,et al.  Influence of temperature and plasma parameters on the properties of PEALD HfO2 , 2021 .

[2]  Md. Golam Hafiz,et al.  Optical bandgap control in Al2O3/TiO2 heterostructures by plasma enhanced atomic layer deposition: Toward quantizing structures and tailored binary oxides. , 2021, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  P. Ma,et al.  Atomic layer deposition of Al2O3 and HfO2 for high power laser application , 2020 .

[4]  P. Ma,et al.  The characterization and properties of mixed Sc2O3/SiO2 films , 2020 .

[5]  B. Rus,et al.  Femtosecond Laser-Induced Damage Characterization of Multilayer Dielectric Coatings , 2020, Coatings.

[6]  G. Mannino,et al.  Comparison between thermal and plasma enhanced atomic layer deposition processes for the growth of HfO2 dielectric layers , 2020, Journal of Crystal Growth.

[7]  Soon-Gil Yoon,et al.  Structural, Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer Deposition , 2020, Materials.

[8]  Nuo Xu,et al.  Effects of water adsorption on properties of electron-beam HfO2/SiO2 high-reflection coatings , 2020 .

[9]  Y. Alqaheem,et al.  Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes , 2020, Membranes.

[10]  K. Kukli,et al.  Silicon oxide-niobium oxide mixture films and nanolaminates grown by atomic layer deposition from niobium pentaethoxide and hexakis(ethylamino) disilane , 2020, Nanotechnology.

[11]  A. Tünnermann,et al.  Effect of an electric field during the deposition of silicon dioxide thin films by plasma enhanced atomic layer deposition: an experimental and computational study. , 2020, Nanoscale.

[12]  H. Kozuka,et al.  In-plane stress development in sol–gel-derived titania and silica thin films on Si(100) substrates , 2019, Journal of Sol-Gel Science and Technology.

[13]  D. Golosov,et al.  Influence of film thickness on the dielectric characteristics of hafnium oxide layers , 2019, Thin Solid Films.

[14]  L. Imhoff,et al.  Curvature radius measurement by optical profiler and determination of the residual stress in thin films , 2019, Applied Surface Science.

[15]  R. Buzelis,et al.  High temperature annealing effects on spectral, microstructural and laser damage resistance properties of sputtered HfO2 and HfO2-SiO2 mixture-based UV mirrors , 2019, Optical Materials.

[16]  A. Gottwald,et al.  Validation of thin film TiO2 optical constants by reflectometry and ellipsometry in the VUV spectral range , 2019, Measurement Science and Technology.

[17]  Jianda Shao,et al.  Investigation on picosecond laser-induced damage in HfO2/SiO2 high-reflective coatings , 2018, Optics & Laser Technology.

[18]  K. Kukli,et al.  Atomic Layer Deposition and Properties of HfO2-Al2O3 Nanolaminates , 2018 .

[19]  P. Ma,et al.  Enhanced thermomechanical stability on laser-induced damage by functionally graded layers in quasi-rugate filters , 2018 .

[20]  P. Ma,et al.  ALD anti-reflection coatings at 1ω, 2ω, 3ω, and 4ω for high-power ns-laser application , 2018 .

[21]  Xiujian Chou,et al.  Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition , 2018 .

[22]  Lei Wang,et al.  Effects of Bilayer Thickness on the Morphological, Optical, and Electrical Properties of Al2O3/ZnO Nanolaminates , 2017, Nanoscale Research Letters.

[23]  A. Bananej,et al.  Band gap energy and refractive index dependence of femtosecond laser induced damage threshold in dielectric thin films , 2017 .

[24]  M. Ritala,et al.  Studies on Thermal Atomic Layer Deposition of Silver Thin Films , 2017 .

[25]  S. Junhong,et al.  Influence of Substrate Surface Properties on Laser-induced Damage Properties of TiO2 Thin Films , 2016 .

[26]  Yaowei Wei,et al.  Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition , 2016 .

[27]  Nabil Shovon Ashraf,et al.  New Prospects of Integrating Low Substrate Temperatures with Scaling-Sustained Device Architectural Innovation , 2016, New Prospects of Integrating Low Substrate Temperatures with Scaling-Sustained Device Architectural Innovation.

[28]  Umut T. Sanli,et al.  Comparative study of ALD SiO 2 thin films for optical applications , 2016 .

[29]  P. Souček,et al.  Mechanical properties of atomic layer deposited Al2O3/ZnO nanolaminates , 2015 .

[30]  A. Schwartzberg,et al.  Complex Materials by Atomic Layer Deposition , 2015, Advanced materials.

[31]  S. Vidya,et al.  Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis , 2015 .

[32]  C. Ramana,et al.  Structure and optical properties of nanocrystalline hafnium oxide thin films , 2014 .

[33]  H. Qi,et al.  Mechanism for defect dependence of damage morphology in HfO2/SiO2 high reflectivity coating under nanosecond ultraviolet laser irradiation , 2014 .

[34]  A. Besnard,et al.  Stoney Formula: Investigation of Curvature Measurements by Optical Profilometer , 2014 .

[35]  F. Piallat Plasma assisted chemical deposi-tion (CVD/ALD) and integration of Ti(Al)N and Ta(Al)N for sub-20 nm metal gate , 2014 .

[36]  Arunas Ramanavicius,et al.  Tuning Optical Properties of Al2O3/ZnO Nanolaminates Synthesized by Atomic Layer Deposition , 2014 .

[37]  X. Liu,et al.  Rugate notch filter fabricated by atomic layer deposition. , 2014, Applied optics.

[38]  L. Gallais,et al.  Laser-induced damage thresholds of bulk and coating optical materials at 1030  nm, 500  fs. , 2014, Applied optics.

[39]  A. Tünnermann,et al.  Roughness and optical losses of rugate coatings. , 2014, Applied optics.

[40]  F. Krausz,et al.  Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates. , 2013, Optics express.

[41]  K. Choy,et al.  Fabrication of Multilayer ZnO/TiO2/ZnO Thin Films with Enhancement of Optical Properties by Atomic Layer Deposition (ALD) , 2013 .

[42]  Jin-seong Park,et al.  Rapid vapor deposition SiO2 thin film deposited at a low temperature using tris(tert-pentoxy)silanol and trimethyl-aluminum , 2013 .

[43]  P. Chalker,et al.  Dielectric relaxation of high-k oxides , 2013, Nanoscale Research Letters.

[44]  J. Talghader,et al.  Continuous-wave laser damage of uniform and nanolaminate hafnia and titania optical coatings. , 2013, Optics letters.

[45]  M. Fang,et al.  Wide-angle and broadband graded-refractive-index antireflection coatings , 2013 .

[46]  Laurent Gallais,et al.  Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings. , 2013, Applied optics.

[47]  Michel Lequime,et al.  Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs , 2013 .

[48]  Aurel Stratan,et al.  Automated test station for laser-induced damage threshold measurements according to ISO 21254-1,2,3,4 standards , 2012, Laser Damage.

[49]  R. Drazdys,et al.  Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on niobia-silica and zirconia-silica mixtures. , 2012, Optics express.

[50]  G. Wang,et al.  Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films , 2012 .

[51]  M. Trubetskov,et al.  Oscillations in spectral behavior of total losses (1 - R - T) in thin dielectric films. , 2012, Optics express.

[52]  S. Kičas,et al.  Femtosecond laser damage resistance of oxide and mixture oxide optical coatings. , 2012, Optics letters.

[53]  Bernd Szyszka,et al.  Atomic Layer Deposition , 2011 .

[54]  G. Dingemans,et al.  Plasma-Assisted Atomic Layer Deposition of Low Temperature SiO2 , 2011 .

[55]  G. DeBell,et al.  Optical parameters of oxide films typically used in optical coating production. , 2011, Applied optics.

[56]  Myriam Zerrad,et al.  Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range. , 2011, Applied optics.

[57]  Gerhard Ulm,et al.  Ultraviolet and vacuum-ultraviolet detector-based radiometry at the Metrology Light Source , 2010 .

[58]  A. Bananej,et al.  The effect of porosity on the laser induced damage threshold of TiO2 and ZrO2 single layer films , 2010 .

[59]  Christopher J. Stolz,et al.  BDS thin film UV antireflection laser damage competition , 2010, Laser Damage.

[60]  Holger Blaschke,et al.  Investigations on SiO2/HfO2 mixtures for nanosecond and femtosecond pulses , 2010, Laser Damage.

[61]  N. Kamble,et al.  Correlation between local structure and refractive index of e-beam evaporated (HfO2–SiO2) composite thin films , 2010 .

[62]  Olaf Stenzel,et al.  Realistische Modellierung der NIR/VIS/UV‐optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells , 2009 .

[63]  W. Keuning,et al.  Low Temperature Plasma-Enhanced Atomic Layer Deposition of Metal Oxide Thin Films , 2009, ECS Transactions.

[64]  G. Aygun,et al.  Interfacial and structural properties of sputtered HfO2 layers , 2009 .

[65]  Steve Hall,et al.  Ellipsometric analysis of mixed metal oxides thin films , 2008 .

[66]  M. Kordesch,et al.  Amorphous hafnium oxide thin films for antireflection optical coatings , 2008 .

[67]  F. Krausz,et al.  Hafnium oxide thin films deposited by reactive middle-frequency dual-magnetron sputtering , 2007 .

[68]  Jianda Shao,et al.  Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector , 2007 .

[69]  Satoshi Kamiyama,et al.  Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors , 2006 .

[70]  M. Liu,et al.  Microstructure and interfacial properties of HfO2–Al2O3 nanolaminate films , 2006 .

[71]  Steffen Wilbrandt,et al.  New optimization algorithm for the synthesis of rugate optical coatings. , 2006, Applied optics.

[72]  P. Evans,et al.  Atomic layer deposition of TiO2 and Al2O3 thin films and nanolaminates , 2006 .

[73]  Deane Chandler-Horowitz,et al.  Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon , 2005 .

[74]  Tao Wang,et al.  Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings , 2005 .

[75]  Martin L. Green,et al.  Hafnium oxide films by atomic layer deposition for high- κ gate dielectric applications: Analysis of the density of nanometer-thin films , 2005 .

[76]  M. Al-Kuhaili Optical properties of hafnium oxide thin films and their application in energy-efficient windows , 2004 .

[77]  J. Robertson High dielectric constant oxides , 2004 .

[78]  J. Aarik,et al.  Optical characterization of HfO2 thin films grown by atomic layer deposition , 2004 .

[79]  Jianda Shao,et al.  Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation , 2004 .

[80]  Hagen Bartzsch,et al.  Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering , 2004 .

[81]  Eduard A. Cartier,et al.  Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition , 2001 .

[82]  S. Thakur,et al.  Laser-induced damage threshold study on TiO2/SiO2 multilayer reflective coatings , 2019, Indian Journal of Physics.

[83]  Hao Liu Atomic layer deposition for high power laser applications: Al2O3 and HfO2 , 2018 .

[84]  M. Vargas Nanometric structure-property relationship in hafnium oxide thin films made by sputter-deposition , 2014 .

[85]  J. Oliver Evaporated HfO2/SiO2 Optical Coatings and Modifications for High-Power Laser Applications , 2012 .

[86]  M. Ritala,et al.  Conformality of remote plasma-enhanced atomic layer deposition processes: An experimental study , 2012 .

[87]  van Erj Erik Beekum PEALD and PECVD inorganic layers:microstructure characterization and moisture permeation barrier properties , 2012 .

[88]  Claude Amra,et al.  High-reflectivity HfO2/SiO2 ultraviolet mirrors. , 2002, Applied optics.