Weighted efficient domination problem on some perfect graphs

Abstract Given a simple graph G =( V , E ), a vertex v ∈ V is said to dominate itself and all vertices adjacent to it. A subset D of V is called an efficient dominating set of G if every vertex in V is dominated by exactly one vertex in D . The efficient domination problem is to find an efficient dominating set of G with minimum cardinality. Suppose that each vertex v ∈ V is associated with a weight. Then, the weighted efficient domination problem is to find an efficient dominating set with the minimum weight in G . In this paper, we show that the efficient domination problem is NP-complete for planar bipartite graphs and chordal bipartite graphs. Assume that a permutation diagram of a bipartite permutation graph and a one-vertex-extension ordering of a distance-hereditary graph are given in advance. Then, we give O (| V |) time algorithms for the weighted efficient domination problem on bipartite permutation graphs and distance-hereditary graphs.

[1]  Chuan Yi Tang,et al.  Effincient Domination of Permutation Graphs and Trapezoid Graphs , 1997, COCOON.

[2]  Quentin F. Stout,et al.  Perfect Dominating Sets on Cube-Connected Cycles , 1993 .

[3]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..

[4]  Michael R. Fellows,et al.  Perfect domination , 1991, Australas. J Comb..

[5]  Ortrud R. Oellermann,et al.  Steiner Distance-Hereditary Graphs , 1994, SIAM J. Discret. Math..

[6]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[7]  Gen-Huey Chen,et al.  Dynamic Programming on Distance-Hereditary Graphs , 1997, ISAAC.

[8]  Marina Moscarini,et al.  Distance-Hereditary Graphs, Steiner Trees, and Connected Domination , 1988, SIAM J. Comput..

[9]  Maw-Shang Chang,et al.  Polynomial Algorithms for the Weighted Perfect Domination Problems on Chordal Graphs and Split Graphs , 1993, Inf. Process. Lett..

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Paul M. Weischel Distance regular subgraphs of a cube , 1992 .

[12]  Paul M. Weichsel,et al.  Dominating sets in n-cubes , 1994, J. Graph Theory.

[13]  C. Pandu Rangan,et al.  Weighted Independent Perfect Domination on Cocomparability Graphs , 1993, Discret. Appl. Math..

[14]  Maw-Shang Chang,et al.  Polynomial Algorithms for Weighted Perfect Domination Problems on Interval and Circular-Arc Graphs , 1994, J. Inf. Sci. Eng..

[15]  Derek H. Smith,et al.  Perfect codes in the graphs Ok , 1975 .

[16]  Richard C. T. Lee,et al.  The Weighted Perfect Domination Problem and Its Variants , 1996, Discret. Appl. Math..

[17]  Richard C. T. Lee,et al.  The Weighted Perfect Domination Problem , 1990, Inf. Process. Lett..

[18]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[19]  N. Biggs Perfect codes in graphs , 1973 .

[20]  R.C.T. Lee,et al.  A Linear Time Algorithm to Solve the Weighted Perfect Domination Problem in Series-Parallel Graphs , 1994 .

[21]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[22]  Martin E. Dyer,et al.  Planar 3DM is NP-Complete , 1986, J. Algorithms.

[23]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[24]  N. Biggs Combinatorics: Perfect codes and distance-transitive graphs , 1974 .

[25]  Stephen T. Hedetniemi,et al.  Bibliography on domination in graphs and some basic definitions of domination parameters , 1991, Discret. Math..

[26]  Feodor F. Dragan,et al.  Dominating Cliques in Distance-Hereditary Graphs , 1994, SWAT.

[27]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[28]  E. Howorka A CHARACTERIZATION OF DISTANCE-HEREDITARY GRAPHS , 1977 .

[29]  Maw-Shang Chang Weighted Domination of Cocomparability Graphs , 1997, Discret. Appl. Math..

[30]  A. Brandstädt,et al.  A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs , 1998 .

[31]  M. Livingston,et al.  Distributing resources in hypercube computers , 1988, C3P.

[32]  Quentin F. Stout,et al.  PERFECT DOMINATING SETS , 1990 .

[33]  Feodor F. Dragan,et al.  A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs , 1998, Networks.

[34]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .