A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation.

[1]  Todd M. Allen,et al.  Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. , 2014, Cell stem cell.

[2]  P. Khavari,et al.  ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes , 2014, Genes & development.

[3]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[4]  Ashley M. Zehnder,et al.  Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition , 2014, Genome research.

[5]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[6]  J. Kere,et al.  Dominant mutations in GRHL3 cause Van der Woude Syndrome and disrupt oral periderm development. , 2014, American journal of human genetics.

[7]  Ben Lehner,et al.  Human epidermal stem cell function is regulated by circadian oscillations. , 2013, Cell stem cell.

[8]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[9]  Jun S. Song,et al.  Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. , 2013, Cell stem cell.

[10]  L. Maquat,et al.  Control of myogenesis by rodent SINE-containing lncRNAs. , 2013, Genes & development.

[11]  Pei Xu,et al.  Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. , 2013, Biochemical and biophysical research communications.

[12]  David R. Kelley,et al.  Long noncoding RNAs regulate adipogenesis , 2013, Proceedings of the National Academy of Sciences.

[13]  G. Crabtree,et al.  ACTL6a enforces the epidermal progenitor state by suppressing SWI/SNF-dependent induction of KLF4. , 2013, Cell stem cell.

[14]  Vincent L. Butty,et al.  Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment , 2013, Cell.

[15]  Manolis Kellis,et al.  The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. , 2013, Developmental cell.

[16]  Howard Y. Chang,et al.  Control of somatic tissue differentiation by the long non-coding RNA TINCR , 2012, Nature.

[17]  Richard Bonneau,et al.  A Validated Regulatory Network for Th17 Cell Specification , 2012, Cell.

[18]  Dan E. Webster,et al.  Genomic profiling of a human organotypic model of AEC syndrome reveals ZNF750 as an essential downstream target of mutant TP63. , 2012, American journal of human genetics.

[19]  Michael D. Zeller,et al.  GRHL3/GET1 and Trithorax Group Members Collaborate to Activate the Epidermal Progenitor Differentiation Program , 2012, PLoS genetics.

[20]  F. Markowetz,et al.  Diverse epigenetic strategies interact to control epidermal differentiation , 2012, Nature Cell Biology.

[21]  S. Crotty,et al.  Bcl6 and Maf Cooperate To Instruct Human Follicular Helper CD4 T Cell Differentiation , 2012, The Journal of Immunology.

[22]  C. Birchmeier,et al.  The Transcription Factor c-Maf Controls Touch Receptor Development and Function , 2012, Science.

[23]  Z. Siprashvili,et al.  ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. , 2012, Developmental cell.

[24]  Howard Y. Chang,et al.  Suppression of progenitor differentiation requires the long noncoding RNA ANCR. , 2012, Genes & development.

[25]  Rory Johnson,et al.  Human long non‐coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors , 2012, The EMBO journal.

[26]  E. Furlong,et al.  Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development , 2012, Nature Genetics.

[27]  H. Lodish,et al.  Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. , 2011, Genes & development.

[28]  S. Rutz,et al.  Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in TH17 cells , 2011, Nature Immunology.

[29]  Howard Y. Chang,et al.  A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression , 2011, Nature.

[30]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[31]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[32]  R. Mantovani,et al.  C/EBPδ Gene Targets in Human Keratinocytes , 2010, PloS one.

[33]  T. Kodama,et al.  Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. , 2010, The Journal of clinical investigation.

[34]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[35]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[36]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[37]  K. Kataoka,et al.  c-Maf and MafB transcription factors are differentially expressed in Huxley's and Henle's layers of the inner root sheath of the hair follicle and regulate cuticle formation. , 2010, Journal of dermatological science.

[38]  B. Aronow,et al.  Engineered human skin substitutes undergo large-scale genomic reprogramming and normal skin-like maturation after transplantation to athymic mice. , 2010, The Journal of investigative dermatology.

[39]  T. Kodama,et al.  Blimp1-mediated repression of negative regulators is required for osteoclast differentiation , 2010, Proceedings of the National Academy of Sciences.

[40]  Paul A. Khavari,et al.  DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue , 2010, Nature.

[41]  M. Sieweke,et al.  MafB/c-Maf Deficiency Enables Self-Renewal of Differentiated Functional Macrophages , 2009, Science.

[42]  P. Kastner,et al.  MafB Restricts M-CSF-Dependent Myeloid Commitment Divisions of Hematopoietic Stem Cells , 2009, Cell.

[43]  Ton Schoenmaker,et al.  Transcription factor C/EBPβ isoform ratio regulates osteoclastogenesis through MafB , 2009, The EMBO journal.

[44]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[45]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[46]  A. Eychène,et al.  A new MAFia in cancer , 2008, Nature Reviews Cancer.

[47]  K. Calame,et al.  Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1 , 2007, Proceedings of the National Academy of Sciences.

[48]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[49]  F. McKeon,et al.  p63 Is Essential for the Proliferative Potential of Stem Cells in Stratified Epithelia , 2007, Cell.

[50]  P. Khavari,et al.  Mek1/2 MAPK kinases are essential for Mammalian development, homeostasis, and Raf-induced hyperplasia. , 2007, Developmental cell.

[51]  I. Artner,et al.  MafB is required for islet β cell maturation , 2007, Proceedings of the National Academy of Sciences.

[52]  M. Kretz,et al.  p63 regulates proliferation and differentiation of developmentally mature keratinocytes. , 2006, Genes & development.

[53]  Zhengquan Yu,et al.  The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. , 2006, Developmental biology.

[54]  Elaine Fuchs,et al.  Canonical notch signaling functions as a commitment switch in the epidermal lineage. , 2006, Genes & development.

[55]  D. Geiger,et al.  Seborrhea-like dermatitis with psoriasiform elements caused by a mutation in ZNF750, encoding a putative C2H2 zinc finger protein , 2006, Nature Genetics.

[56]  S. Jane,et al.  A Homolog of Drosophila grainy head Is Essential for Epidermal Integrity in Mice , 2005, Science.

[57]  D. Koller,et al.  A module map showing conditional activity of expression modules in cancer , 2004, Nature Genetics.

[58]  J. D. Engel,et al.  Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  G. Dotto,et al.  High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. , 2004, Developmental cell.

[60]  T. Matsuoka,et al.  Members of the Large Maf Transcription Family Regulate Insulin Gene Transcription in Islet β Cells , 2003, Molecular and Cellular Biology.

[61]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[62]  G. Barsh,et al.  The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. , 2002, Developmental biology.

[63]  F. McKeon,et al.  Mutations in the p53 homolog p63: allele-specific developmental syndromes in humans. , 2002, Trends in molecular medicine.

[64]  T. Graf,et al.  MafB is an inducer of monocytic differentiation , 2000, The EMBO journal.

[65]  Elaine Fuchs,et al.  Klf4 is a transcription factor required for establishing the barrier function of the skin , 1999, Nature Genetics.

[66]  H. Vogel,et al.  p63 is a p53 homologue required for limb and epidermal morphogenesis , 1999, Nature.

[67]  Linda H. Shapiro,et al.  c-Maf Interacts with c-Myb To Regulate Transcription of an Early Myeloid Gene during Differentiation , 1998, Molecular and Cellular Biology.

[68]  N. Andrews,et al.  The Maf transcription factors: regulators of differentiation. , 1997, Trends in biochemical sciences.

[69]  T. Graf,et al.  MafB Is an Interaction Partner and Repressor of Ets-1 That Inhibits Erythroid Differentiation , 1996, Cell.