Guest Editors' Introduction: Special Section on Volume Graphics and Point-Based Graphics

The six papers in this special issue are extended versions of papers presented at the IEEE/EG International Symposium om Volume Graphics, held in September 2007 in Prague, and the joint event of the IEEE/EG International Symposia on Volume Graphics (VG '08) and Point-Based Graphics (PBG '08), held in August 2008 in Los Angeles.

[1]  Dezhong Chen,et al.  Curve Shortening Flow in a Riemannian Manifold , 2003, math/0312463.

[2]  Luiz Velho,et al.  Discrete scale spaces via heat equation , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[3]  Jiansong Deng,et al.  Diffusion Equations over Arbitrary Triangulated Surfaces for Filtering and Texture Applications , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  Max A. Viergever,et al.  Scale Space Hierarchy , 2003, Journal of Mathematical Imaging and Vision.

[5]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[6]  Kaleem Siddiqi,et al.  Geometric Heat Equation and Nonlinear Diffusion of Shapes and Images , 1996, Comput. Vis. Image Underst..

[7]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Joachim Weickert,et al.  A semidiscrete nonlinear scale-space theory and its relation to the Perona - Malik paradox , 1996, TFCV.

[9]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[11]  J. Weickert Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor , 1994 .

[12]  Robert Hummel,et al.  Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..

[13]  Tony Lindeberg,et al.  Scale-space theory : A framework for handling image structures at multiple scales , 1996 .

[14]  Luc Florack,et al.  Understanding and Modeling the Evolution of Critical Points under Gaussian Blurring , 2002, ECCV.

[15]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Tony Lindeberg,et al.  Scale-space behaviour of local extrema and blobs , 1992, Journal of Mathematical Imaging and Vision.

[17]  Roman Goldenberg,et al.  Fast Geodesic Active Contours , 1999, Scale-Space.

[18]  Ron Kimmel,et al.  Geometric curve flows on parametric manifolds , 2007, J. Comput. Phys..

[19]  M. Gage Curve shortening makes convex curves circular , 1984 .

[20]  J. Sponring The entropy of scale-space , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[21]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[22]  James A. Sethian,et al.  Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics , 1993, Exp. Math..

[23]  Luc Florack,et al.  The Topological Structure of Scale-Space Images , 2000, Journal of Mathematical Imaging and Vision.

[24]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[25]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[27]  Ron Kimmel Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[28]  K. Mikula,et al.  Evolution of curves on a surface driven by the geodesic curvature and external force , 2006 .

[29]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[30]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[31]  M. Grayson Shortening embedded curves , 1989 .

[32]  S. Osher,et al.  Motion of curves constrained on surfaces using a level-set approach , 2002 .

[33]  Jiansong Deng,et al.  Scale-Space Analysis of Discrete Filtering over Arbitrary Triangulated Surfaces , 2009, SIAM J. Imaging Sci..

[34]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[35]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .