Electrically-switchable foundry-processed phase change photonic devices

Optical phase change materials (PCMs) are a unique class of materials which exhibit extraordinarily large optical property change (e.g. refractive index change > 1) when undergoing a solid-state phase transition, and they have witnessed increasing adoption in active integrated photonics and metasurface devices in recent years. Here we report integration of chalcogenide phase change materials in the Lincoln Laboratory 8-inch Si foundry process and the demonstration of electrothermally switched phase-change photonic devices building on a wafer-scale silicon-on-insulator heater platform.

[1]  Li Lu,et al.  Tuneable Thermal Emission Using Chalcogenide Metasurface , 2018, Advanced Optical Materials.

[2]  Richard Soref,et al.  Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material , 2019, Journal of Lightwave Technology.

[3]  E. Pop,et al.  Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency , 2022, Nature Communications.

[4]  T. Zentgraf,et al.  Beam switching and bifocal zoom lensing using active plasmonic metasurfaces , 2017, Light: Science & Applications.

[5]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[6]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials for high-performance nonvolatile photonics , 2018, Nature Communications.

[7]  Arka Majumdar,et al.  Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches , 2018, ACS Photonics.

[8]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[9]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[10]  Hualiang Zhang,et al.  Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material , 2020, Nature Nanotechnology.

[11]  Linjie Zhou,et al.  Miniature Multilevel Optical Memristive Switch Using Phase Change Material , 2019, ACS Photonics.

[12]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[14]  Hitoshi Kawashima,et al.  Current-driven phase-change optical gate switch using indium–tin-oxide heater , 2017 .

[15]  A. Adibi,et al.  ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics. , 2020, Optics express.

[16]  Anna Baldycheva,et al.  Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces , 2020, Optica.

[17]  Calum Williams,et al.  PCM-net: a refractive index database of chalcogenide phase change materials for tunable nanophotonic device modelling , 2020, Journal of Physics: Photonics.

[18]  Ke Li,et al.  Multipurpose silicon photonics signal processor core , 2017, Nature Communications.

[19]  C. Wright,et al.  Nonvolatile All‐Optical 1 × 2 Switch for Chipscale Photonic Networks , 2017 .

[20]  Qiang Li,et al.  Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. , 2018, Nanoscale.

[21]  U. Celano,et al.  Electrical tuning of phase-change antennas and metasurfaces , 2020, Nature Nanotechnology.

[22]  O. Muskens,et al.  A New Family of Ultralow Loss Reversible Phase‐Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3 , 2020, Advanced Functional Materials.

[23]  Xuan Li,et al.  Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality , 2018, Science Advances.

[24]  Stephen E. Borg,et al.  Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging , 2020, Optica.

[25]  D. Thomson,et al.  Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material , 2021, Science Advances.

[26]  Dirk Englund,et al.  Programmable photonic circuits , 2020, Nature.

[27]  Xuan Li,et al.  Parallel convolutional processing using an integrated photonic tensor core , 2021, Nature.

[28]  J. Kong,et al.  Multi‐Level Electro‐Thermal Switching of Optical Phase‐Change Materials Using Graphene , 2020, 2007.07944.

[29]  I. Takeuchi,et al.  Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material , 2019, ACS Photonics.

[30]  Reconfigurable all-dielectric metalens with diffraction-limited performance , 2019, 1911.12970.

[31]  A. Majumdar,et al.  Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. , 2020, ACS applied materials & interfaces.

[32]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[33]  C. Wright,et al.  On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials. , 2020, Optics express.

[34]  Anant Agarwal,et al.  Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses , 2009 .

[35]  Zhiyuan Cheng,et al.  Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials. , 2018, Applied optics.

[36]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[37]  A. Adibi,et al.  Tunable nanophotonics enabled by chalcogenide phase-change materials , 2020, 2001.06335.

[38]  Juejun Hu,et al.  Transient Tap Couplers for Wafer-Level Photonic Testing Based on Optical Phase Change Materials , 2021 .

[39]  Thomas Taubner,et al.  Active Chiral Plasmonics. , 2015, Nano letters.

[40]  Changming Wu,et al.  Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network , 2020, Nature Communications.

[41]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[42]  R. Soref,et al.  Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. , 2018, Optics letters.

[43]  D. Werner,et al.  Design for quality: reconfigurable flat optics based on active metasurfaces , 2020, Nanophotonics.

[44]  M. Qiu,et al.  Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5 , 2018, Optical Materials Express.

[45]  Eric Pop,et al.  Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. , 2020, Advanced materials.

[46]  C. D. Wright,et al.  A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices , 2021, Journal of Applied Physics.

[47]  Eric S. Harper,et al.  Artificial neural network discovery of a switchable metasurface reflector. , 2020, Optics express.

[48]  Tian Gu,et al.  Myths and truths about optical phase change materials: A perspective , 2021, Applied Physics Letters.

[49]  Joel K. W. Yang,et al.  Rewritable color nanoprints in antimony trisulfide films , 2020, Science advances.

[50]  A. Krasnok,et al.  Tunable phase-change metasurfaces , 2021, Nature Nanotechnology.

[51]  V. Pruneri,et al.  Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials , 2013 .

[53]  Linjie Zhou,et al.  Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. , 2019, Science bulletin.