Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases

We propose a scheme to generate stable vector spatiotemporal solitons through a Rydberg electromagnetically induced transparency (Rydberg-EIT) system. Three-dimensional vector monopole and vortex solitons have been found under three nonlocal degrees. The numerical calculation and analytical solutions indicate that these solitons are generated with low energy and can stably propagate along the axes. The behavior of vector spatiotemporal solitons can be manipulated by the local and nonlocal nonlinearities. The results show a memory feature as these solitons can be stored and retrieved effectively by tuning the control field.