The winning methods for predicting cellular position in the DREAM single cell transcriptomics challenge
暂无分享,去创建一个
Xiaomei Li | Lin Liu | Jiuyong Li | Thin Nguyen | Vu VH Pham | Vu V H Pham | Thuc D Le | Buu Truong | Jiuyong Li | T. Le | Lin Liu | B. Truong | Thin Nguyen | Xiaomei Li
[1] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD 2000.
[2] J. Marioni,et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin , 2015, Nature Biotechnology.
[3] Kevin R. Moon,et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.
[4] Nikolaus Rajewsky,et al. The Drosophila embryo at single-cell transcriptome resolution , 2017, Science.
[5] I. Amit,et al. Single-cell spatial reconstruction reveals global division of labor in the mammalian liver , 2016, Nature.
[6] B. Matthews. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.
[7] A. Regev,et al. Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.
[8] Ke Xu,et al. Predicting cellular position in the Drosophila embryo from Single-Cell Transcriptomics data , 2019, bioRxiv.