A [(NHC)CuCl] complex as a latent Click catalyst.

A latent catalyst for the [3+2] cycloaddition reaction of azides and alkynes has been developed in accordance with the principles of Click chemistry.

[1]  I. Goldberg,et al.  A Thermally Switchable Latent Ruthenium Olefin Metathesis Catalyst , 2008 .

[2]  J. Lutz,et al.  In Situ Functionalization of Thermoresponsive Polymeric Micelles using the “Click” Cycloaddition of Azides and Alkynes , 2007 .

[3]  M. Yeh,et al.  New investigation of 1-substituted imidazole derivatives as thermal latent catalysts for epoxy-phenolic resins , 2007 .

[4]  A. Dondoni Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction. , 2007, Chemistry, an Asian journal.

[5]  Sukbok Chang,et al.  Rate-accelerated nonconventional amide synthesis in water: a practical catalytic aldol-surrogate reaction. , 2007, Angewandte Chemie.

[6]  K. Sharpless,et al.  Copper-catalyzed synthesis of N-sulfonyl-1,2,3-triazoles: controlling selectivity. , 2007, Angewandte Chemie.

[7]  Jean-François Lutz,et al.  1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. , 2007, Angewandte Chemie.

[8]  R. Grubbs,et al.  Latent Olefin Metathesis Catalysts Featuring Chelating Alkylidenes , 2006 .

[9]  L. Cavallo,et al.  (NHC)Copper(I)-catalyzed [3+2] cycloaddition of azides and mono- or disubstituted alkynes. , 2006, Chemistry.

[10]  Samuel A. Delp,et al.  Chemistry surrounding monomeric copper(I) methyl, phenyl, anilido, ethoxide, and phenoxide complexes supported by N-heterocyclic carbene ligands: reactivity consistent with both early and late transition metal systems. , 2006, Inorganic chemistry.

[11]  J. Hedrick,et al.  Alcohol adducts of N-heterocyclic carbenes : Latent catalysts for the thermally-controlled living polymerization of cyclic esters , 2006 .

[12]  V. Fokin,et al.  Practical synthesis of amides from in situ generated copper(I) acetylides and sulfonyl azides. , 2006, Angewandte Chemie.

[13]  V. Fokin,et al.  Copper-catalyzed reaction cascade: direct conversion of alkynes into N-sulfonylazetidin-2-imines. , 2006, Angewandte Chemie.

[14]  J. Hedrick,et al.  Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. , 2005, Angewandte Chemie.

[15]  Chao-Jun Li,et al.  Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. , 2005, Chemical reviews.

[16]  S. Nolan,et al.  A simple and efficient copper-catalyzed procedure for the hydrosilylation of hindered and functionalized ketones. , 2005, The Journal of organic chemistry.

[17]  C. Slugovc,et al.  Thermally Switchable Olefin Metathesis Initiators Bearing Chelating Carbenes: Influence of the Chelate's Ring Size , 2005 .

[18]  N. Mankad,et al.  Synthesis, Structure, and Alkyne Reactivity of a Dimeric (Carbene)copper(I) Hydride , 2004 .

[19]  R. Breslow Determining the geometries of transition States by use of antihydrophobic additives in water. , 2004, Accounts of chemical research.

[20]  N. Mankad,et al.  Synthesis, Structure, and CO2 Reactivity of a Two-Coordinate (Carbene)copper(I) Methyl Complex , 2004 .

[21]  S. Nolan,et al.  (NHC)Cu^I (NHC = N-Heterocyclic Carbene) Complexes as Efficient Catalysts for the Reduction of Carbonyl Compounds , 2004 .

[22]  Ying‐Ling Liu,et al.  Using diethylphosphites as thermally latent curing agents for epoxy compounds , 2003 .

[23]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[24]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[25]  A. J. Blake,et al.  Chelating alkoxy-N-heterocyclic carbene complexes of silver and copper. , 2001, Chemical communications.

[26]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[27]  O. Piermatti,et al.  Recent Advances in Lewis Acid Catalyzed Diels−Alder Reactions in Aqueous Media , 2001 .

[28]  T. Endo,et al.  Development and application of a latent hydrosilylation catalyst. IX. Control of the catalytic activity of a platinum catalyst by polymers bearing amine moieties , 2000 .

[29]  J. Crivello The discovery and development of onium salt cationic photoinitiators , 1999 .

[30]  T. Endo,et al.  Application of Phosphonium Ylides to Latent Catalysts for Polyaddition of Bisphenol A Diglycidyl Ether with Bisphenol A: Model System of Epoxy-Novolac Resin , 1999 .

[31]  T. Endo,et al.  Development and Application of Latent Catalysts for Hydrosilylation System. 1. Control of Activity of Platinum Catalyst by Isocyanide , 1998 .

[32]  Y. Yagcı,et al.  An allylic pyridinium salt: Radical promoted latent thermal catalyst for cationic polymerization , 1996 .

[33]  T. Endo,et al.  Design of latent catalysts and their application to polymer synthesis , 1996 .

[34]  R. Huisgen Kinetics and reaction mechanisms: selected examples from the experience of forty years , 1989 .

[35]  Günter Szeimies,et al.  1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen , 1967 .

[36]  Dongmei Cui,et al.  Supplementary Material (ESI) for Chemical Communications , 2009 .

[37]  Lionel Delaude,et al.  Visible light induced ring-opening metathesis polymerisation of cyclooctene , 2001 .

[38]  T. Endo,et al.  Development and application of latent hydrosilylation catalysts [2]—Control of catalytic activity of platinum catalyst by polystyrene derivatives having propargyl moieties , 2000 .