MSOL partitioning problems on graphs of bounded treewidth and clique-width

We show that a class of vertex partitioning problems that can be expressed in monadic second order logic (MSOL) are polynomials on graphs of bounded clique-width. This class includes coloring, H-free coloring, domatic number and partition into perfect graphs. Moreover we show that a class of vertex and edge partitioning problems are polynomials on graphs of bounded treewidth.

[1]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[2]  Egon Wanke,et al.  How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.

[3]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory B.

[4]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[5]  S. Feferman,et al.  The first order properties of products of algebraic systems , 1959 .

[6]  Bruno Courcelle,et al.  The Monadic Second order Logic of Graphs VI: on Several Representations of Graphs By Relational Structures , 1994, Discret. Appl. Math..

[7]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[8]  Egon Wanke,et al.  Deciding Clique-Width for Graphs of Bounded Tree-Width , 2001, J. Graph Algorithms Appl..

[9]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[10]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[11]  Johann A. Makowsky,et al.  Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..

[12]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2005, TALG.

[13]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[14]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[15]  Michael U. Gerber,et al.  Algorithms for vertex-partitioning problems on graphs with fixed clique-width , 2003, Theor. Comput. Sci..

[16]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[17]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[18]  Clemens Lautemann Logical Definability of NP-Optimization Problems with Monadic Auxiliary Predicates , 1992, CSL.

[19]  Hans L. Bodlaender,et al.  Achromatic Number is NP-Complete for Cographs and Interval Graphs , 1989, Inf. Process. Lett..

[20]  H. Läuchli A Decision Procedure for the Weak Second Order Theory of Linear Order , 1968 .

[21]  Udi Rotics,et al.  On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..

[22]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[23]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[24]  Dieter Rautenbach,et al.  The tree- and clique-width of bipartite graphs in special classes , 2006, Australas. J Comb..

[25]  Bruno Courcelle,et al.  Vertex-minors, monadic second-order logic, and a conjecture by Seese , 2007, J. Comb. Theory, Ser. B.