Weighted likelihood CFAR detection for Weibull background

[1]  Tuan Vu Cao,et al.  Constant false-alarm rate algorithm based on test cell information , 2008 .

[2]  Amar Mezache,et al.  Radar CFAR detection in Weibull clutter based on zlog(z) estimator , 2020 .

[3]  S. Ejaz Ahmed,et al.  Robust weighted likelihood estimation of exponential parameters , 2005, IEEE Transactions on Reliability.

[4]  Graham V. Weinberg,et al.  An Invariant Sliding Window Detection Process , 2017, IEEE Signal Processing Letters.

[5]  Graham V. Weinberg General transformation approach for constant false alarm rate detector development , 2014, Digit. Signal Process..

[6]  Graham V. Weinberg,et al.  Development of non-coherent CFAR detection processes in Weibull background , 2018, Digit. Signal Process..

[7]  Nadav Levanon,et al.  Performances of order statistics CFAR , 1991 .

[8]  S. D. Howard,et al.  Optimal Predictive Inference and Noncoherent CFAR Detectors , 2020, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Ning Zhang,et al.  A robust constant false alarm rate detector based on the Bayesian estimator for the non-homogeneous Weibull Clutter in HFSWR , 2020, Digit. Signal Process..

[10]  Wei Zhou,et al.  Robust CFAR Detector With Weighted Amplitude Iteration in Nonhomogeneous Sea Clutter , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[11]  M. Barkat,et al.  Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments , 2005 .

[12]  Junhao Xie,et al.  Modified cell averaging CFAR detector based on Grubbs criterion in non‐homogeneous background , 2019, IET Radar, Sonar & Navigation.

[13]  Hermann Rohling,et al.  Radar CFAR Thresholding in Clutter and Multiple Target Situations , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Graham V. Weinberg,et al.  On the Construction of CFAR Decision Rules via Transformations , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Saeed Gazor,et al.  Invariance and Optimality of CFAR Detectors in Binary Composite Hypothesis Tests , 2014, IEEE Transactions on Signal Processing.

[16]  Rafi Ravid,et al.  Maximum-likelihood CFAR for Weibull background , 1992 .

[17]  Saleem A. Kassam,et al.  Analysis of CFAR processors in homogeneous background , 1988 .

[18]  Saleem A. Kassam,et al.  Optimality of the cell averaging CFAR detector , 1994, IEEE Trans. Inf. Theory.

[19]  V. Anastassopoulos,et al.  Optimal CFAR detection in Weibull clutter , 1995 .

[20]  Jose Ramon Casar Corredera,et al.  Probability of false alarm of CA-CFAR detector in Weibull clutter , 1998 .

[21]  S. F. George,et al.  Detection of Targets in Non-Gaussian Sea Clutter , 1970, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Gustavo Fraidenraich,et al.  CA-CFAR Detection Performance in Homogeneous Weibull Clutter , 2019, IEEE Geoscience and Remote Sensing Letters.

[23]  Wei Zhou,et al.  A Bayesian CFAR detector for interference control in Weibull clutter , 2020, Digit. Signal Process..

[24]  You He,et al.  Proof of CFAR by the use of the invariant test , 2000, IEEE Trans. Aerosp. Electron. Syst..

[25]  Graham V. Weinberg,et al.  Interference control in sliding window detection processes using a Bayesian approach , 2020, Digit. Signal Process..

[26]  Kai-Bor Yu,et al.  Modelling and simulation of coherent Weibull clutter , 1989 .

[27]  Wei Zhou,et al.  Maximum Likelihood Detector in Gamma-Distributed Sea Clutter , 2018, IEEE Geoscience and Remote Sensing Letters.

[28]  Graham V. Weinberg,et al.  Assessing Pareto fit to high-resolution high-grazing-angle sea clutter , 2011 .