Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials

Abstract Combining several theories this paper presents a general multiphysics framework applied to the study of coupled and active materials, considering mechanical, electric, magnetic and thermal fields. The framework is based on thermodynamic equilibrium and non-equilibrium interactions, both linked by a two-temperature model. The multi-coupled governing equations are obtained from energy, momentum and entropy balances; the total energy is the sum of thermal, mechanical and electromagnetic parts. The momentum balance considers mechanical plus electromagnetic balances; for the latter the Abraham representation using the Maxwell stress tensor is formulated. This tensor is manipulated to automatically fulfill the angular momentum balance. The entropy balance is formulated using the classical Gibbs equation for equilibrium interactions and non-equilibrium thermodynamics. For the non-linear finite element formulations, this equation requires the transformation of thermoelectric coupling and conductivities into tensorial form. The two-way thermoelastic Biot term introduces damping: thermomechanical, pyromagnetic and pyroelectric converse electromagnetic dynamic interactions. Ponderomotrix and electromagnetic forces are also considered. The governing equations are converted into a variational formulation with the resulting four-field, multi-coupled formalism implemented and validated with two custom-made finite elements in the research code FEAP. Standard first-order isoparametric eight-node elements with seven degrees of freedom (dof) per node (three displacements, voltage and magnetic scalar potentials plus two temperatures) are used. Non-linearities and dynamics are solved with Newton-Raphson and Newmark-$$\beta $$β algorithms, respectively. Results of thermoelectric, thermoelastic, thermomagnetic, piezoelectric, piezomagnetic, pyroelectric, pyromagnetic and galvanomagnetic interactions are presented, including non-linear dependency on temperature and some second-order interactions.

[1]  Dan Mihai Ştefănescu,et al.  Handbook of Force Transducers , 2011 .

[2]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[3]  G. Mase,et al.  Continuum Mechanics for Engineers, Second Edition , 1999 .

[4]  M. Abraham SulĽelettrodinamica di minkowski , 1910 .

[5]  G. L. Goudreau,et al.  Evaluation of numerical integration methods in elastodynamics , 1973 .

[6]  K. Hirata,et al.  Fully coupled electro-magneto-mechanical analysis method of magnetostrictive actuator using 3-D finite element method , 2008, 2008 18th International Conference on Electrical Machines.

[7]  A. Cemal Eringen,et al.  Mechanics of continua , 1967 .

[8]  Horn-Sen Tzou,et al.  PYROELECTRIC AND THERMAL STRAIN EFFECTS OF PIEZOELECTRIC (PVDF AND PZT) DEVICES , 1996 .

[9]  Liyong Tong,et al.  Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals , 2009 .

[10]  R. McMeeking,et al.  A principle of virtual work for combined electrostatic and mechanical loading of materials , 2007 .

[11]  Richard C. Dorf,et al.  The Electrical Engineering Handbook , 1993 .

[12]  José L. Pérez-Aparicio,et al.  Finite Element Analysis of Nonlinear Fully Coupled Thermoelectric Materials , 2007 .

[13]  M. Sadiku Numerical Techniques in Electromagnetics , 2000 .

[14]  M. Benbouzid,et al.  Finite element modelling of magnetostrictive devices: investigations for the design of the magnetic circuit , 1995 .

[15]  Ernian Pan,et al.  Free vibration response of two-dimensional magneto-electro-elastic laminated plates , 2006 .

[16]  S. R. Groot Non-equilibrium thermodynamics of systems in an electromagnetic field , 1961 .

[17]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[18]  A. Soh,et al.  On the Constitutive Equations of Magnetoelectroelastic Solids , 2005 .

[19]  Chad M. Landis,et al.  A new finite‐element formulation for electromechanical boundary value problems , 2002 .

[20]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[21]  K. Linnemann,et al.  A phenomenological constitutive model for magnetostrictive materials and ferroelectric ceramics , 2008 .

[22]  K. Linnemann,et al.  A Constitutive Model for Magnetostrictive Materials ‐ Theory and Finite Element Implementation , 2006 .

[23]  R. Walser,et al.  Application of pyromagnetic phenomena to radiation detection , 1972 .

[24]  A Review of Magnetostrictive Iron—Gallium Alloys , 2012 .

[25]  Sven Klinkel,et al.  A constitutive model for magnetostrictive and piezoelectric materials , 2009 .

[26]  Qungui Du,et al.  Thermal Stress Analysis and Structure Parameter Selection for a Bi2Te3-Based Thermoelectric Module , 2011 .

[27]  K. Bathe,et al.  An Iterative Finite Element Procedure for the Analysis of Piezoelectric Continua , 1995 .

[28]  J. K. Gimzewski,et al.  Observation of nuclear fusion driven by a pyroelectric crystal , 2005, Nature.

[29]  H. L. Dryden INTERNATIONAL SERIES OF MONOGRAPHS IN AERONAUTICS AND ASTRONAUTICS CHAIRMAN , 1964 .

[30]  H. Haus,et al.  The force density in polarizable and magnetizable fluids , 1966 .

[31]  G. Reyne,et al.  Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method , 1995 .

[32]  R. McMeeking,et al.  Electrostatic Forces and Stored Energy for Deformable Dielectric Materials , 2005 .

[33]  R. T. Delves,et al.  Figure of merit for Ettingshausen cooling , 1964 .

[34]  E. Hernández-Lemus,et al.  Hysteresis in nonequilibrium steady states: the role of dissipative couplings , 2002 .

[35]  M. Jaegle,et al.  Simulation of Thermoelectric Systems-Modeling of Peltier-Cooling and Thermoelectric Generation , 2008 .

[36]  David Jou,et al.  Understanding Non-equilibrium Thermodynamics , 2008 .

[37]  P. Bowyer The momentum of light in media : the Abraham-Minkowski controversy , 2005 .

[38]  E. E. Antonova,et al.  Finite elements for thermoelectric device analysis in ANSYS , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[39]  Manfred Kaltenbacher,et al.  Physical modeling and numerical computation of magnetostriction , 2009 .

[40]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[41]  Robert L. Taylor,et al.  Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model , 2012 .

[42]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[43]  D. J. Bergman,et al.  Electrical, thermoelectric and thermophysical properties of hornet cuticle , 2005 .

[44]  D. Tang,et al.  Coupled Finite Element Analysis of Generalized Thermoelasticity in Semi-Infinite Medium , 2006 .

[45]  A. Borovik-romanov PIEZOMAGNETISM IN THE ANTIFERROMAGNETIC FLUORIDES OF COBALT AND MANGANESE , 2015 .

[46]  Wenbin Yu,et al.  Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method , 2009 .

[47]  M. Mansuripur Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation. , 2012, Physical review letters.

[48]  S. Sobolev,et al.  APPLICATIONS OF EXTENDED THERMODYNAMICS TO CHEMICAL, RHEOLOGICAL, AND TRANSPORT PROCESSES : A SPECIAL SURVEY. I: APPROACHES AND SCALAR RATE PROCESSES , 1995 .

[49]  Adel Razek,et al.  Calculation of mechanical deformation of magnetic materials in electromagnetic devices , 1995 .

[50]  H. Callen,et al.  The Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects , 1948 .

[51]  Booker,et al.  Finite Element Analysis of Coupled Thermoelasticity , 1987 .

[52]  Kelth W.Ross,et al.  Properties of Materials:anisotropy,symmetry,structure , 2009 .

[53]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[54]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[55]  M. Gurtin,et al.  On the Clausius-Duhem inequality , 1966 .

[56]  Ya-Peng Shen,et al.  A DIRECT FINITE ELEMENT METHOD STUDY OF GENERALIZED THERMOELASTIC PROBLEMS , 2006 .

[57]  J. Llebot,et al.  A thermodynamic approach to heat and electric conduction in solids , 1983 .

[58]  R. Taylor,et al.  Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers , 2012 .

[59]  Andrés Díaz Lantada,et al.  Handbook of Active Materials for Medical Devices: Advances and Applications , 2011 .

[60]  Markus Bartel,et al.  Multiphysics Simulation of Thermoelectric Systems for Comparison with Experimental Device Performance , 2009 .

[61]  R. N. Thurston,et al.  Historical note: Warren P. Mason (1900-1986) physicist, engineer, inventor, author, teacher , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[62]  G. Gerlach,et al.  3-D Modeling of Pyroelectric Sensor Arrays Part I: Multiphysics Finite-Element Simulation , 2008, IEEE Sensors Journal.

[63]  Guillermo Rus,et al.  Optimal measurement setup for damage detection in piezoelectric plates , 2009 .

[64]  V. Lubarda On thermodynamic potentials in linear thermoelasticity , 2004 .

[65]  Saffa Riffat,et al.  Thermoelectrics: a review of present and potential applications , 2003 .

[66]  J. R. Brauer,et al.  Finite element analysis of Hall effect and magnetoresistance , 1995 .

[67]  A. Dasgupta,et al.  A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures , 1997 .

[68]  G. Lebon,et al.  An Extended Irreversible Thermodynamic Description of Electrothermoelastic Semiconductors , 1986 .

[69]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[70]  R. Taylor The Finite Element Method, the Basis , 2000 .

[71]  H. Youssef Theory of Two-Temperature Thermoelasticity without Energy Dissipation , 2011 .

[72]  Ray W. Ogden,et al.  On electric body forces and Maxwell stresses in nonlinearly electroelastic solids , 2009 .

[73]  Ieee Standards Board,et al.  IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature , 1973, IEEE Transactions on Sonics and Ultrasonics.

[74]  Barbara Kaltenbacher,et al.  Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials , 2010 .

[75]  R. Yan,et al.  A numerical model of displacement for giant magnetostrictive actuator , 2004, IEEE Transactions on Applied Superconductivity.

[76]  C. Cattaneo,et al.  Sulla Conduzione Del Calore , 2011 .

[77]  M. Ezzat,et al.  On the Two-Temperature Green–Naghdi Thermoelasticity Theories , 2011 .

[78]  M. Gurtin,et al.  On a theory of heat conduction involving two temperatures , 1968 .

[79]  Kumar K. Tamma,et al.  An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects , 1992 .

[80]  R. Billardon,et al.  Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects , 1995 .

[81]  S. Johnstone Is there potential for use of the Hall effect in analytical science? , 2008, The Analyst.

[82]  Sun Bao-yuan,et al.  A new model describing physical effects in crystals: the diagrammatic and analytic methods for macro-phenomenological theory , 2003 .

[83]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[84]  Adel Razek,et al.  Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials , 1996 .

[85]  Yi He,et al.  Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics , 2004 .

[86]  H. Youssef Theory of two-temperature-generalized thermoelasticity , 2006 .

[87]  H. Langtangen,et al.  Mixed Finite Elements , 2003 .

[88]  José L. Pérez-Aparicio,et al.  Study of hysteretic thermoelectric behavior in photovoltaic materials using the finite element method, extended thermodynamics and inverse problems , 2013 .

[89]  Zhenhan Yao,et al.  FEM analysis of electro-mechanical coupling effect of piezoelectric materials , 1997 .

[90]  N. Ganesan,et al.  Pyroelectric and pyromagnetic effects on multiphase magneto–electro–elastic cylindrical shells for axisymmetric temperature , 2013 .

[91]  G. Bisio,et al.  Thermodynamic analysis of elastic systems , 2001 .

[92]  Horacio Sosa,et al.  A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials , 2004 .

[93]  Paul Steinmann,et al.  Finite Element Approaches to Non-classical Heat Conduction in Solids , 2005 .

[94]  D. Griffiths Introduction to Electrodynamics , 2017 .

[95]  G. Maugin,et al.  Nonlinear equations for thermoelastic magnetizable conductors , 1990 .

[96]  H. Okumura,et al.  Numerical computation of thermoelectric and thermomagnetic effects , 1998, Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365).

[97]  S. Griffis EDITOR , 1997, Journal of Navigation.

[98]  Ming-Chyuan Lin,et al.  An Investigation of the Thermal Stresses Induced in a Thin-Film Thermoelectric Cooler , 2008 .

[99]  S. Barnett,et al.  Momentum Exchange between Light and a Single Atom: Abraham or Minkowski? , 2008, Physical review letters.

[100]  A. Ballato,et al.  Piezoelectricity: old effect, new thrusts , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[101]  Albrecht C. Liskowsky,et al.  On a vector potential formulation for 3D electromechanical finite element analysis , 2005 .

[102]  Marc Kamlah,et al.  Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior , 2001 .

[103]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[104]  R. Rajapakse,et al.  Effects of remanent field on an elliptical flaw and a crack in a poled piezoelectric ceramic , 2004 .

[105]  S. Hanagud,et al.  Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[106]  Horacio Sosa,et al.  Numerical investigations of field-defect interactions in piezoelectric ceramics , 2007 .

[107]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[108]  S. Yamaguchi,et al.  A computational model of thermoelectric and thermomagnetic semiconductors , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[109]  M. Biot Thermoelasticity and Irreversible Thermodynamics , 1956 .

[110]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[111]  Bernard D. Coleman,et al.  Thermodynamics of materials with memory , 1964 .

[112]  L. Restuccia,et al.  On generalizations of the Debye equation for dielectric relaxation , 1988 .

[113]  Tatsuo Inoue,et al.  Hyperbolic Thermoelastic Analysis due to Pulsed Heat Input by Numerical Simulation , 2006 .

[114]  Thermodynamics for Beginners , 1984 .

[115]  Park Byung Min,et al.  ポリ(3,4‐エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)バッファ層に埋め込まれた金ナノ粒子を有するフレキシブルバルクヘテロ接合有機太陽電池の特性 , 2016 .

[116]  G. Reyne,et al.  Nonlinear finite element modelling of giant magnetostriction , 1993 .

[117]  Y. Ersoy A new nonlinear constitutive theory for conducting magnetothermoelastic solids , 1984 .

[118]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[119]  Paul Steinmann,et al.  Theoretical and computational aspects of non-classical thermoelasticity , 2006 .

[120]  D. Vasilevskiy,et al.  Numerical Simulation of the Thermomechanical Behavior of Extruded Bismuth Telluride Alloy Module , 2009 .

[121]  García-Colín,et al.  Thermodynamic basis for dielectric relaxation in complex materials. , 1986, Physical review. B, Condensed matter.

[122]  G. Meunier,et al.  Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators , 1998 .

[123]  Frederick J. Milford,et al.  Foundations of Electromagnetic Theory , 1961 .

[124]  Y. Ersoy A new nonlinear constitutive theory of electric and heat conductions for magnetoelastothermo-electrical anisotropic solids , 1986 .

[125]  K. Woodbridge,et al.  Pulsed Ettingshausen Cooling in Bismuth , 1978 .

[126]  José L. Pérez-Aparicio,et al.  Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics , 2016 .

[127]  L. Restuccia,et al.  On the heat dissipation function for dielectric relaxation phenomena in anisotropic media , 1992 .

[128]  R. N. Thurston,et al.  Warren P. Mason (1900–1986), physicist, engineer, inventor, author, teacher , 1989 .

[129]  E. Serra,et al.  A finite element formulation for thermoelastic damping analysis , 2009 .

[130]  Robert L. Taylor,et al.  FEAP - - A Finite Element Analysis Program , 2011 .

[131]  E. Caley,et al.  Theophrastus on Stones , 2016 .

[132]  L. Restuccia On a thermodynamic theory for magnetic relaxation phenomena due to n microscopic phenomena described by n internal variables , 2010 .

[133]  Paul Steinmann,et al.  Modeling and simulation of first and second sound in solids , 2008 .

[134]  Guillermo Rus,et al.  Experimental design of dynamic model-based damage identification in piezoelectric ceramics , 2012 .

[135]  H. Brenner,et al.  Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[136]  M. McCall,et al.  EMCON 4 Four Poynting theorems Dr , 2009 .

[137]  A. Ferrari,et al.  Thermodynamic formulation of the constitutive equations for solids and fluids , 2013 .

[138]  J. Jiménez,et al.  THE BALANCE EQUATIONS OF ENERGY AND MOMENTUM IN CLASSICAL ELECTRODYNAMICS , 1995 .

[139]  Rafael Gallego,et al.  Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics , 2009 .

[140]  S. Barnett,et al.  Resolution of the abraham-minkowski dilemma. , 2010, Physical review letters.