Main-Chain Cobaltocenium-Containing Ionomers for Alkaline Anion-Exchange Membranes

[1]  T. Kowalewski,et al.  Suppressing Water Uptake and Increasing Hydroxide Conductivity in Ring-Opened Polynorbornene Ion-Exchange Materials via Backbone Design , 2022, ACS Applied Polymer Materials.

[2]  Jielu Yan,et al.  Role of Ionic Concentration and Distribution in Anionic Conductivity: Case Study on a Series of Cobaltocenium-Containing Anion Exchange Membranes with Precise Structure Control , 2022, Macromolecules.

[3]  V. Rassolov,et al.  Stability Analysis of Substituted Cobaltocenium [Bis(cyclopentadienyl)cobalt(III)] Employing Chemistry-Informed Neural Networks. , 2022, Journal of chemical theory and computation.

[4]  Jeremy L. Hitt,et al.  Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. , 2022, Chemical reviews.

[5]  V. Rassolov,et al.  Correlation between the Stability of Substituted Cobaltocenium and Molecular Descriptors. , 2022, The journal of physical chemistry. A.

[6]  Xabier Judez,et al.  Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries , 2021, Chemistry of Materials.

[7]  Y. Lee,et al.  Impact of side-chains in poly(diphenyl-co-terphenyl piperidinium) copolymers for anion exchange membrane fuel cells , 2021, Journal of Membrane Science.

[8]  Tianyu Zhu,et al.  Mechanochemistry of Cationic Cobaltocenium Mechanophore. , 2021, Journal of the American Chemical Society.

[9]  Won Hee Lee,et al.  Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells , 2021, Nature Communications.

[10]  Y. Lee,et al.  Anion exchange polyelectrolytes for membranes and ionomers , 2021 .

[11]  Won Hee Lee,et al.  Poly(Alkyl‐Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkaline‐Membrane Fuel‐Cell Performance of 2.58 W cm−2 , 2020, Angewandte Chemie.

[12]  A. Herring,et al.  Ring-opening metathesis polymerization of cobaltocenium derivative to prepare anion exchange membrane with high ionic conductivity , 2020 .

[13]  Dario R. Dekel,et al.  Self-crosslinked blend alkaline anion exchange membranes with bi-continuous phase separated morphology to enhance ion conductivity , 2020 .

[14]  Mark D. Smith,et al.  Rational Synthesis of Metallo-Cations Toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes. , 2019, Journal of the American Chemical Society.

[15]  Albert S. Lee,et al.  On the origin of permanent performance loss of anion exchange membrane fuel cells: Electrochemical oxidation of phenyl group , 2019, Journal of Power Sources.

[16]  Dario R. Dekel,et al.  Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability , 2019, Nature Communications.

[17]  Chulsung Bae,et al.  Adsorption of Polyaromatic Backbone Impacts the Performance of Anion Exchange Membrane Fuel Cells , 2019, Chemistry of Materials.

[18]  D. Muller,et al.  Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans-cyclooctene derivatives , 2019, Proceedings of the National Academy of Sciences.

[19]  Jiarui Yang,et al.  4-formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell , 2019, European Polymer Journal.

[20]  M. Tuckerman,et al.  Synthesis of Aromatic Anion Exchange Membranes by Friedel–Crafts Bromoalkylation and Cross-Linking of Polystyrene Block Copolymers , 2019, Macromolecules.

[21]  Tianyu Zhu,et al.  Ring-Closing Metathesis and Ring-Opening Metathesis Polymerization toward Main-Chain Ferrocene-Containing Polymers , 2018, Macromolecules.

[22]  L. Zhuang,et al.  Alkaline polymer electrolyte fuel cells stably working at 80 °C , 2018, Journal of Power Sources.

[23]  G. Coates,et al.  Synthesis of Alkaline Anion Exchange Membranes with Chemically Stable Imidazolium Cations: Unexpected Cross-Linked Macrocycles from Ring-Fused ROMP Monomers , 2018 .

[24]  Tianyu Zhu,et al.  Cationic Metallo-Polyelectrolytes for Robust Alkaline Anion-Exchange Membranes. , 2018, Angewandte Chemie.

[25]  Hassan S. Bazzi,et al.  Ring opening metathesis polymerization (ROMP) of five‐ to eight‐membered cyclic olefins: Computational, thermodynamic, and experimental approach , 2017 .

[26]  Dong Won Shin,et al.  Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. , 2017, Chemical reviews.

[27]  A. Lai,et al.  Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells. , 2016, ACS Applied Materials and Interfaces.

[28]  Y. Lee Fuel cells: Operating flexibly , 2016, Nature Energy.

[29]  S. Mecking,et al.  Direct Synthesis of Imidazolium-Functional Polyethylene by Insertion Copolymerization. , 2016, Macromolecular rapid communications.

[30]  Steven E. Tignor,et al.  Systematic Alkaline Stability Study of Polymer Backbones for Anion Exchange Membrane Applications , 2016 .

[31]  Yi Yan,et al.  Metallocenium Chemistry and Its Emerging Impact on Synthetic Macromolecular Chemistry , 2016, Synlett.

[32]  Zhengjin Yang,et al.  Click Chemistry Finds Its Way in Constructing an Ionic Highway in Anion-Exchange Membrane. , 2015, ACS applied materials & interfaces.

[33]  Yushan Yan,et al.  Permethyl Cobaltocenium (Cp*2Co+) as an Ultra-Stable Cation for Polymer Hydroxide-Exchange Membranes , 2015, Scientific Reports.

[34]  S. Jang,et al.  Molecular Dynamics Simulation Study of a Polysulfone-Based Anion Exchange Membrane in Comparison with the Proton Exchange Membrane , 2014 .

[35]  S. Liao,et al.  Assessing the influence of side-chain and main-chain aromatic benzyltrimethyl ammonium on anion exchange membranes. , 2014, ACS applied materials & interfaces.

[36]  Cy H. Fujimoto,et al.  Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells , 2012 .

[37]  Jiuyang Zhang,et al.  Side-Chain Metallocene-Containing Polymers by Living and Controlled Polymerizations , 2012 .

[38]  Gregory N Tew,et al.  Metal-cation-based anion exchange membranes. , 2012, Journal of the American Chemical Society.

[39]  Paul F. Mutolo,et al.  Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as an Alkaline Anion Exchange Membrane , 2010 .

[40]  M. F. Mayer,et al.  Entropy-driven ring-opening olefin metathesis polymerizations of macrocycles , 2009 .

[41]  Zhongwei Chen,et al.  A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. , 2009, Angewandte Chemie.

[42]  P. Hodge,et al.  Entropically driven ring-opening-metathesis polymerization of macrocyclic olefins with 21-84 ring atoms. , 2003, Angewandte Chemie.

[43]  Thanh Huong Pham,et al.  Poly(arylene piperidinium) Hydroxide Ion Exchange Membranes: Synthesis, Alkaline Stability, and Conductivity , 2018 .

[44]  Jiuyang Zhang,et al.  Charged metallopolymers as universal precursors for versatile cobalt materials. , 2013, Angewandte Chemie.