Advanced Asymptotic Methods

Asymptotic analysis is a key ingredient in capturing multiscale dynamics. In this chapter, a collection of asymptotic and perturbation methods is presented. The focus is on the basic principles of methods and key examples to understand their application. All methods can be applied in many other circumstances, and although the algebraic manipulations change, the principles of the methods tend to carry over.

[1]  C. Meunier,et al.  Multiphase Averaging for Classical Systems: With Applications To Adiabatic Theorems , 1988 .

[2]  R. O'Malley On the Asymptotic Solution of the Singularly Perturbed Boundary Value Problems Posed by Bohé , 2000 .

[3]  A. Szeri,et al.  Topology and resonances in a quasiperiodically forced oscillator , 2004 .

[4]  Yuri Skrynnikov,et al.  Solving Initial Value Problem by Matching Asymptotic Expansions , 2012, SIAM J. Appl. Math..

[5]  D. Bainov,et al.  Justification of the averaging method for a system of differential equations with fast and slow variables and with impulses , 1981 .

[6]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[7]  Reinhard Schäfke,et al.  Gevrey separation of fast and slow variables , 1996 .

[8]  K. Roberts,et al.  New Stokes’ line in WKB theory , 1982 .

[9]  Paul C. Fife,et al.  Boundary and interior transition layer phenomena for pairs of second-order differential equations☆ , 1976 .

[10]  P. Hsieh A turning point problem for a system of linear ordinary differential equations of the third order , 1965 .

[11]  George A. Hagedorn,et al.  A Time-Dependent Born–Oppenheimer Approximation with Exponentially Small Error Estimates , 2001 .

[12]  Y. Sibuya,et al.  Gevrey solutions of singularly perturbed differential equations , 2000 .

[13]  J. Gillis,et al.  Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .

[14]  N. K. Rozov,et al.  Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .

[15]  Cetin Cetinkaya,et al.  Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems with Cyclic Symmetry , 1993, SIAM J. Appl. Math..

[16]  Asymptotic expansion for the solution of singularly perturbed delay differential equations , 2003 .

[17]  R. G. Casten,et al.  Basic Concepts Underlying Singular Perturbation Techniques , 1972 .

[18]  Guy Métivier,et al.  Averaging theorems for conservative systems and the weakly compressible Euler equations , 2003 .

[19]  H. A. Kramers,et al.  Wellenmechanik und halbzahlige Quantisierung , 1926 .

[20]  Tim Kiemel,et al.  Relative Phase Behavior of Two Slowly Coupled Oscillators , 1993, SIAM J. Appl. Math..

[21]  Transition time analysis in singularly perturbed boundary value problems , 1995 .

[22]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[23]  Wiktor Eckhaus Fundamental Concepts of Matching , 1994, SIAM Rev..

[24]  É. Benoît,et al.  Solutions surstables des équations différentielles complexes lentes-rapides à point tournant , 1998 .

[25]  C. Howls Exponential asymptotics and boundary-value problems: keeping both sides happy at all orders , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  L. Skinner Uniform solution of boundary layer problems exhibiting resonance , 1987 .

[27]  M. P. Williams Another look at Ackerberg-O'Malley resonance , 1981 .

[28]  Y. Kifer Averaging and climate models , 2001 .

[29]  P. Fife,et al.  Existence of heteroclinic orbits for a corner layer problem in anisotropic interfaces , 2007, Advances in Differential Equations.

[30]  De Groen Spectral properties of second-order singularly perturbed boundary value problems with turning points , 1977 .

[31]  J. Kevorkian,et al.  Perturbation techniques for oscillatory systems with slowly varying coefficients , 1987 .

[32]  Hinch Perturbation Methods , 1991 .

[33]  Eleftherios Kirkinis,et al.  The Renormalization Group: A Perturbation Method for the Graduate Curriculum , 2012, SIAM Rev..

[34]  J. Gervais,et al.  WKB wave function for systems with many degrees of freedom: A unified view of solitons and pseudoparticles , 1977 .

[35]  Leonid V. Kalachev,et al.  The Boundary Function Method for Singular Perturbation Problems , 1995 .

[36]  D. Reinelt,et al.  Note on Logarithmic Switchback Terms in Regular and Singular Perturbation Expansions , 1984 .

[37]  R. Marcus Extension of the WKB method to wave functions and transition probability amplitudès (S-matrix) for inelastic or reactive collisions , 1970 .

[38]  S. C. Persek,et al.  Iterated averaging methods for systems of ordinary differential equations with a small parameter , 1978 .

[39]  The approximate decomposition of exponential order of slow–fast motions in multifrequency systems , 2004 .

[40]  W. Eckhaus Asymptotic Analysis of Singular Perturbations , 1979 .

[41]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[42]  Multi-instantons and exact results I: Conjectures, WKB expansions, and instanton interactions , 2004, quant-ph/0501136.

[43]  Shafic S. Oueini,et al.  Dynamics of a Cubic Nonlinear Vibration Absorber , 1999 .

[44]  I. Bright Moving averages of ordinary differential equations via convolution , 2011 .

[45]  Nigel Goldenfeld,et al.  Selection, stability and renormalization , 1994 .

[46]  Hui-Hui Dai,et al.  Asymptotic Bifurcation Solutions for Compressions of a Clamped Nonlinearly Elastic Rectangle: Transition Region and Barrelling to a Corner-like Profile , 2009, SIAM J. Appl. Math..

[47]  L. Long Uniformly-valid asymptotic solutions to the Orr-Sommerfeld equation using multiple scales , 1987 .

[48]  A. K. Bajaj,et al.  On the Method of Averaging, Integral Manifolds and Systems with Symmetry , 1985 .

[49]  B. Willner,et al.  Uniform Asymptotic Solutions for Linear Second Order Ordinary Differential Equations with Turning Points: Formal Theory , 1977 .

[50]  Robert M. Miura,et al.  Singular Perturbation Analysis of Boundary Value Problems for Differential-Difference Equations , 1982 .

[51]  I. Bright Tight estimates for general averaging applied to almost-periodic differential equations , 2009 .

[52]  Ali Nadim,et al.  Coupled pulsation and translation of two gas bubbles in a liquid , 2001, Journal of Fluid Mechanics.

[53]  William L. Kath Necessary conditions for sustained reentry roll resonance , 1983 .

[54]  C. Hunter,et al.  On Lagerstrom's model of slow incompressible viscous flow , 1990 .

[55]  On averaged and normal form equations , 1995 .

[56]  Existence and stability of periodic motion under higher order averaging , 1986 .

[57]  Hayato Chiba Reduction of weakly nonlinear parabolic partial differential equations , 2013, 1302.0562.

[58]  W. Eckhaus Matched Asymptotic Expansions and Singular Perturbations , 1973 .

[59]  On the Approximation of Double Limits by Single Limits and the Kaplun Extension Theorem , 1967 .

[60]  Jan Awrejcewicz,et al.  Asymptotic approaches in nonlinear dynamics , 1996 .

[61]  Two-variable expansions and singular perturbation problems. , 1969 .

[62]  Peter Szmolyan,et al.  Asymptotic expansions using blow-up , 2005 .

[63]  Joe H. Chow,et al.  Singular perturbation analysis of systems with sustained high frequency oscillations , 1978, Autom..

[64]  Xiaobiao Lin Shadowing lemma and singularly perturbed boundary value problems , 1989 .

[65]  Y. Sibuya Formal solutions of a linear ordinary differential equation of the nth order at a turning point. , 1962 .

[66]  F. Casas,et al.  Unitary transformations depending on a small parameter , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[68]  C. Meunier,et al.  Multiphase Averaging for Classical Systems , 1988 .

[69]  Lindsay A. Skinner Singular Perturbation Theory , 2011 .

[70]  J. Saut,et al.  Well-Posedness and averaging of NLS with time-periodic dispersion management , 2012, Advances in Differential Equations.

[71]  R. Haberman,et al.  The Modulated Phase Shift for Strongly Nonlinear, Slowly Varying, and Weakly Damped Oscillators , 1988 .

[72]  A. Macgillivray A Method for Incorporating Transcendentally Small Terms into the Method of Matched Asymptotic Expansions , 1997 .

[73]  Chuang Liu,et al.  Scaling and Renormalization , 2002 .

[74]  Emmanuel Frénod,et al.  Application of the averaging method to the gyrokinetic plasma , 2007, Asymptot. Anal..

[75]  Vladimir Gaitsgory,et al.  Multiscale Singularly Perturbed Control Systems: Limit Occupational Measures Sets and Averaging , 2002, SIAM J. Control. Optim..

[76]  S. Kordyukova Approximate Group Analysis and Multiple Time Scales Method for the Approximate Boussinesq Equation , 2006 .

[77]  J. Murdock Perturbations: Theory and Methods , 1987 .

[78]  Keith Promislow,et al.  The semistrong limit of multipulse interaction in a thermally driven optical system , 2008 .

[79]  J. Keller,et al.  Loss of boundary conditions in the asymptotic solution of linear ordinary differential equations, II boundary value problems , 1968 .

[80]  L. Brillouin,et al.  La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives , 1926 .

[81]  Y. Sibuya Asymptotic solutions of a system of linear ordinary differential equations containing a parameter. , 1962 .

[82]  P. Miller Applied asymptotic analysis , 2006 .

[83]  C. Comstock The Poincaré–Lighthill Perturbation Technique and Its Generalizations , 1972 .

[84]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[85]  A B Vasil'eva THE DEVELOPMENT OF THE THEORY OF ORDINARY DIFFERENTIAL EQUATIONS WITH A SMALL PARAMETER MULTIPLYING THE HIGHEST DERIVATIVE DURING THE PERIOD 1966-1976 , 1976 .

[86]  George Esq. Green,et al.  On the Motion of Waves in a variable canal of small depth and width , 1838 .

[87]  Richard Haberman,et al.  Averaging methods for the phase shift of arbitrarily perturbed strongly nonlinear oscillators with an application to capture , 1991 .

[88]  Kenneth R. Meyer,et al.  AVERAGING AND BIFURCATIONS IN SYMMETRIC SYSTEMS , 1977 .

[89]  H. Bremmer,et al.  The W.K.B. approximation as the first term of a geometric-optical series , 1951 .

[90]  A. Kiselev,et al.  Absolutely continuous spectrum for one-dimensional Schrodinger operators with slowly decaying potentials: Some optimal results , 1997, math/9706221.

[91]  Jean Zinn-Justin,et al.  Phase transitions and renormalization group , 2007 .

[92]  J. Sanders,et al.  Limit cycles in the Josephson equations , 1986 .

[93]  R. O'Malley,et al.  Deriving amplitude equations for weakly-nonlinear oscillators and their generalizations , 2006 .

[94]  Ferdinand Verhulst,et al.  A Metaphor for Adiabatic Evolution to Symmetry , 1995, SIAM J. Appl. Math..

[95]  Iyer,et al.  Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. , 1987, Physical review. D, Particles and fields.

[96]  Zvi Artstein,et al.  Averaging of time-varying differential equations revisited , 2007 .

[97]  Modification of the method of boundary functions for singularly perturbed partial differential equations , 1993 .

[98]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[99]  Y. Sibuya A Theorem Concerning Uniform Simplification at a Transition Point and the Problem of Resonance , 1981 .

[100]  Robert E. O'Malley,et al.  Examples Illustrating the Use of Renormalization Techniques for Singularly Perturbed Differential Equations , 2009 .

[101]  M. Canalis-Durand Solution formelle Gevrey d'une équation singulièrement perturbée , 1994 .

[102]  Vladimir Gaitsgory,et al.  Averaging of three time scale singularly perturbed control systems , 2001 .

[103]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[104]  Applying the dual operator formalism to derive the zeroth-order boundary function of the plasma-sheath equation , 2006 .

[105]  P. A. Lagerstrom,et al.  Matched Asymptotic Expansions , 1988 .

[106]  F. W. J. Olver,et al.  Error bounds for the Liouville–Green (or WKB) approximation , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[107]  Steven Weinberg,et al.  Lectures on Quantum Mechanics: HISTORICAL INTRODUCTION , 2012 .

[108]  Classification of resonant equations , 2004 .

[109]  Jan Awrejcewicz,et al.  Introduction to Asymptotic Methods , 2006 .

[110]  J. Cahn,et al.  Analysis of a corner layer problem in anisotropic interfaces , 2005 .

[111]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[112]  A. Kiselev,et al.  WKB and Spectral Analysis¶of One-Dimensional Schrödinger Operators¶with Slowly Varying Potentials , 2001 .

[113]  F. Howes,et al.  Nonlinear Singular Perturbation Phenomena: Theory and Applications , 1984 .

[114]  C. Bender,et al.  WKB analysis of -symmetric Sturm–Liouville problems , 2012, 1201.1234.

[115]  Naoufel Ben Abdallah,et al.  Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity , 2008 .

[116]  B. Matkowsky,et al.  Singular Perturbations of Bifurcations , 1977 .

[117]  G. Papamikos,et al.  WKB approach applied to 1D time-dependent nonlinear Hamiltonian oscillators , 2012 .

[118]  L. A. Skinner Note on the Lagerstrom Singular Perturbation Models , 1981 .

[119]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[120]  Johan Grasman,et al.  A Variational Approach to Singularly Perturbed Boundary Value Problems for Ordinary and Partial Differential Equations with Turning Points , 1976 .

[121]  D. L. Bosley An Improved Matching Procedure for Transient Resonance Layers in Weakly Nonlinear Oscillatory Systems , 1996, SIAM J. Appl. Math..

[122]  Michael E. Fisher,et al.  The renormalization group in the theory of critical behavior , 1974 .

[123]  S. Trofimchuk,et al.  Krylov-Bogolyubov averaging of asymptotically autonomous differential equations , 2004 .

[124]  Mark Levi,et al.  Geometry and physics of averaging with applications , 1999 .

[125]  R. McKelvey The solutions of second order linear ordinary differential equations about a turning point of order two , 1955 .

[126]  Oono,et al.  Renormalization group theory for global asymptotic analysis. , 1994, Physical review letters.

[127]  A. Macgillivray,et al.  Asymptotic analysis of the peeling-off point of a French duck , 1994 .

[128]  M. Krol,et al.  On the averaging method in nearly time-periodic advection-diffusion problems , 1991 .

[129]  Overstability: towards a global study , 1998 .

[130]  L. Skinner Matched expansion solutions of the first-order turning point problem , 1994 .

[131]  Christof Sparber,et al.  Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.

[132]  J. Féjoz Averaging the Planar Three-Body Problem in the Neighborhood of Double Inner Collisions , 2001 .

[133]  L. Rubenfeld On a Derivative-Expansion Technique and Some Comments on Multiple Scaling in the Asymptotic Approximation of Solutions of Certain Differential Equations , 1978 .

[134]  P. Fife,et al.  Analysis of the heteroclinic connection in a singularly perturbed system arising from the study of crystalline grain boundaries , 2006 .

[135]  J. Mesquita,et al.  Non-periodic averaging principles for measure functional differential equations and functional dynamic equations on time scales involving impulses , 2013 .

[136]  S. C. Persek,et al.  Iterated averaging for periodic systems with hidden multiscale slow times. , 1984 .

[137]  W. Eckhaus,et al.  Theory and Applications of Singular Perturbations , 1982 .

[138]  Evans M. Harrell The Complex WKB Method for Nonlinear Equations 1: Linear Theory (Victor P. Maslov) , 1996, SIAM Rev..

[139]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[140]  M. Freidlin,et al.  Geometric optics approach to reaction-diffusion equations , 1986 .

[141]  Richard H. Rand,et al.  Topics in Nonlinear Dynamics with Computer Algebra , 1994 .

[142]  WKB-type approximations for second-order differential equations in C*-algebras , 1996 .

[143]  Robert E. O'Malley,et al.  A New Renormalization Method for the Asymptotic Solution of Weakly Nonlinear Vector Systems , 2003, SIAM J. Appl. Math..

[144]  A. Fruchard,et al.  ON COMBINED ASYMPTOTIC EXPANSIONS IN SINGULAR PERTURBATIONS , 2002 .

[145]  V. A. Plotnikov,et al.  Averaging of quasidifferential equations with fast and slow variables , 1998 .

[146]  Robert E. O'Malley,et al.  Singularly Perturbed Linear Two-Point Boundary Value Problems , 2008, SIAM Rev..

[147]  Carmen Chicone,et al.  Phase-Locked Loops, Demodulation, and Averaging Approximation Time-Scale Extensions , 2013, SIAM J. Appl. Dyn. Syst..

[148]  John P. Boyd,et al.  The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series , 1999 .

[149]  Robert M. Miura,et al.  Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Equations. VI. Small Shifts with Rapid Oscillations , 1994, SIAM J. Appl. Math..

[150]  Roger Temam,et al.  Renormalization group method applied to the primitive equations , 2005 .

[151]  Robert Krasny,et al.  A Hybrid Asymptotic-Finite Element Method for Stiff Two-Point Boundary Value Problems , 1983 .

[152]  J. Liouville Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. , 1837 .

[153]  J. Sanders On the Fundamental Theorem of Averaging , 1983 .

[154]  S. L. Woodruff A uniformly-valid asymptotic solution to a matrix system of ordinary differential equations and a proof of its validity , 1995 .

[155]  C. Comstock On Lighthill’s Method of Strained Coordinates , 1968 .

[156]  E. M. de Jager,et al.  Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type , 1966 .

[157]  Alexander Its,et al.  A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .

[158]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[159]  H. Scott Dumas,et al.  First-Order Averaging Principles for Maps with Applications to Accelerator Beam Dynamics , 2004, SIAM J. Appl. Dyn. Syst..

[160]  Improved Nth order averaging theory for periodic systems , 1990 .

[161]  Ovidiu Costin,et al.  Asymptotics and Borel Summability , 2008 .

[162]  S. Hastings,et al.  Asymptotic behaviour of solutions of a similarity equation for laminar flows in channels with porous walls , 1992 .

[163]  M. Berry,et al.  Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon , 2011 .

[164]  Jan A. Sanders On the Passage through Resonance , 1979 .

[165]  Edward L. Reiss,et al.  A new asymptotic method for jump phenomena , 1980 .

[166]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[167]  J. Baillieul,et al.  Global Dynamics of a Rapidly Forced Cart and Pendulum , 1997 .

[168]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[169]  Numerical study of oscillatory solutions of the gas-dynamic equations , 1991 .

[170]  A. Doelman,et al.  Quasi-periodically forced nonlinear Helmholtz oscillators , 2002 .

[171]  François Golse,et al.  Multiphase averaging for generalized flows on manifolds , 1994 .

[172]  K. Wilson The renormalization group and critical phenomena , 1983 .

[173]  Exponential averaging for Hamiltonian evolution equations , 2002 .

[174]  A note on Kaplun limits and double asymptotics , 1972 .

[175]  P. Jakobsen,et al.  Introduction to the method of multiple scales , 2013, 1312.3651.

[176]  A. Macgillivray The existence of an overlap domain for a singular perturbation problem , 1979 .

[177]  Ali H. Nayfeh The Method of Multiple Scales , 2007 .

[178]  Chris J. Budd Asymptotics of Multibump Blow-up Self-Similar Solutions of the Nonlinear Schrödinger Equation , 2002, SIAM J. Appl. Math..

[179]  Steven A. Orszag,et al.  Asymptotic methods and perturbation theory , 1999 .

[180]  M. M. Dodson,et al.  Averaging in multifrequency systems , 1989 .

[181]  PETER A. BRAZA,et al.  The Bifurcation Structure of the Holling--Tanner Model for Predator-Prey Interactions Using Two-Timing , 2003, SIAM J. Appl. Math..

[182]  J. R. E. O’Malley On Nonlinear Singularly Perturbed Initial Value Problems , 1988 .

[183]  I. Moroz Amplitude expansions and normal forms in a model for thermohaline convection , 1986 .

[184]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[185]  B. Hall Quantum Theory for Mathematicians , 2013 .

[186]  Richard Haberman,et al.  Standard form and a method of averaging for strongly nonlinear oscillatory dispersive traveling waves , 1991 .

[187]  P. Fife Transition layers in singular perturbation problems , 1974 .

[188]  David A. Edwards,et al.  An Alternative Example of the Method of Multiple Scales , 2000, SIAM Rev..

[189]  G. Grammel On Nonlinear Control Systems with Multiple Time Scales , 2004 .

[190]  M. Canalis-Durand,et al.  Monomial summability and doubly singular differential equations , 2007 .

[191]  A. Macgillivray On the switchback term in the asymptotic expansion of a model singular perturbation problem , 1980 .

[192]  R. Konoplya Quasinormal behavior of the D -dimensional Schwarzschild black hole and the higher order WKB approach , 2003 .

[193]  L. Koralov,et al.  Averaging of incompressible flows on two-dimensional surfaces , 2012 .

[194]  Hayato Chiba,et al.  Extension and Unification of Singular Perturbation Methods for ODEs Based on the Renormalization Group Method , 2009, SIAM J. Appl. Dyn. Syst..

[195]  Yuri Kifer,et al.  L2 Diffusion Approximation for Slow Motion in Averaging , 2003 .

[196]  J. R. E. O’Malley Shock and Transition Layers for Singularly Perturbed Second-Order Vector Systems , 1983 .

[197]  H. Demiray Multiple time scale formalism and its application to long water waves , 2010 .

[198]  Shui-Nee Chow,et al.  Integral averaging and bifurcation , 1977 .

[199]  C. Bender,et al.  Matched Asymptotic Expansions: Ideas and Techniques , 1988 .

[200]  Rigorous WKB for finite-order linear recurrence relations with smooth coefficients , 2006, math/0608413.

[201]  Annick Lesne,et al.  Renormalization Methods - Critical Phenomena, Chaos, Fractal Structures , 1998 .

[202]  Zaida Luthey-Schulten,et al.  Determining the stability of genetic switches: explicitly accounting for mRNA noise. , 2011, Physical review letters.

[203]  Discretization in the method of averaging , 1991 .

[204]  A. Voros Zeta-regularization for exact-WKB resolution of a general 1D Schrödinger equation , 2012, 1202.3100.

[205]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[206]  N. Berglund,et al.  The Averaged Dynamics of the Hydrogen Atom in Crossed Electric and Magnetic Fields as a Perturbed Kepler Problem , 2000, nlin/0007018.

[207]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[208]  Zvi Artstein,et al.  Young Measure Approach to Computing Slowly Advancing Fast Oscillations , 2008, Multiscale Model. Simul..

[209]  D. Gilsinn The Method of Averaging and Domains of Stability for Integral Manifolds , 1975 .

[210]  C. Ou,et al.  Shooting Method for Nonlinear Singularly Perturbed Boundary‐Value Problems , 2004 .

[211]  Forman A. Williams,et al.  Chain-Branching Explosions in Mixing Layers , 1999, SIAM J. Appl. Math..

[212]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[213]  S. Woodruff The Use of an lnvariance Condition in the Solution of Multiple‐Scale Singular Perturbation Problems: Ordinary Differential Equations , 1993 .

[214]  R. Haberman Phase Shift Modulations for Stable, Oscillatory, Traveling, Strongly Nonlinear Waves , 1991 .

[215]  Solution of reduced equations derived with singular perturbation methods. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[216]  V. Bakhtin Averaging in multifrequency systems , 1986 .

[217]  P. Fatou,et al.  Sur le mouvement d'un système soumis à des forces à courte période , 1928 .

[218]  M. Berry,et al.  High-order classical adiabatic reaction forces: slow manifold for a spin model , 2010 .

[219]  M. Kouritzin Averaging for Fundamental Solutions of Parabolic Equations , 1997 .

[220]  A. D. MacGillivray ON A MODEL EQUATION OF LAGERSTROM , 1978 .

[221]  E. M. de Jager,et al.  The theory of singular perturbations , 1996 .

[222]  Stephen C. Persek Hierarchies of Iterated Averages for Systems of Ordinary Differential Equations with a Small Parameter , 1981 .

[223]  A remark on singular perturbation methods , 1985 .

[224]  R. Estrada,et al.  A distributional theory for asymptotic expansions , 1994 .

[225]  G. Grammel Limits of nonlinear discrete-time control systems with fast subsystems , 1999 .

[226]  J. Mozo-Fernández,et al.  Multisummability of Formal Solutions of Singular Perturbation Problems , 2002 .

[227]  V. Trenogin THE DEVELOPMENT AND APPLICATIONS OF THE ASYMPTOTIC METHOD OF LYUSTERNIK AND VISHIK , 1970 .

[228]  Daniel O'Malley,et al.  Two-scale renormalization-group classification of diffusive processes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[229]  Stable manifolds in the method of averaging , 1988 .

[230]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[231]  J. Henrard On a perturbation theory using Lie transforms , 1970 .

[232]  S. Hastings,et al.  A boundary value problem with multiple solutions from the theory of laminar flow , 1992 .

[233]  Y. B. Fu,et al.  WKB Method with Repeated Roots and Its Application to the Buckling Analysis of an Everted Cylindrical Tube , 2002, SIAM J. Appl. Math..

[234]  Charles Knessl On the Distribution of the Maximum Number of Broken Machines for the Repairman Problem , 1994, SIAM J. Appl. Math..

[235]  R. O'Malley,et al.  A Survey in Mathematics for Industry: Two-timing and matched asymptotic expansions for singular perturbation problems , 2011, European Journal of Applied Mathematics.

[236]  Donald R. Smith The Multivariable Method in Singular Perturbation Analysis , 1975 .

[237]  R. O'Malley,et al.  On singular singularly perturbed initial value problems , 1989 .

[238]  J. Keller,et al.  Uniform asymptotic solutions of second order linear ordinary differential equations with turning points , 1970 .

[239]  C. Schroer First Order Adiabatic Approximation for a Class of Classical Slow-Fast Systems with Ergodic Fast Dynamics , 1999 .

[240]  H. Gingold,et al.  Asymptotic Solutions of a Hamiltonian System in Intervals with Several Turning Points , 1988 .

[241]  Jan A. Sanders Asymptotic Approximations and Extension of Time-Scales , 1980 .

[242]  Hayato Chiba,et al.  C1 Approximation of Vector Fields Based on the Renormalization Group Method , 2008, SIAM J. Appl. Dyn. Syst..

[243]  D. Wollkind Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with that of Multiple Scales , 1977 .

[244]  Dmitry Pelinovsky,et al.  Averaging of Dispersion-Managed Solitons: Existence and Stability , 2003, SIAM J. Appl. Math..

[245]  Y. Sibuya Simplification of a linear ordinary differential equation of the nth order at a turning point , 1963 .

[246]  Differentiability and its asymptotic analysis for nonlinear singularly perturbed boundary value problem , 2008 .

[247]  C. Schmeiser,et al.  Asymptotic analysis of singular singularly perturbed boundary value problems , 1986 .

[248]  Karsten Matthies,et al.  Time-Averaging under Fast Periodic Forcing of Parabolic Partial Differential Equations: Exponential Estimates , 2001 .

[249]  Anthony Harkin,et al.  Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations , 2008 .

[250]  Chiang C. Mei,et al.  On slowly-varying Stokes waves , 1970, Journal of Fluid Mechanics.

[251]  Gregory A. Kriegsman,et al.  Bifurcation in classical bipolar transistor oscillator circuits , 1989 .

[252]  Rémi Carles,et al.  (Semi)Classical Limit of the Hartree Equation with Harmonic Potential , 2005, SIAM J. Appl. Math..

[253]  M. Ghil,et al.  Non-Hamiltonian perturbations of integrable systems and resonance trapping , 1992 .

[254]  Matching principles and composite expansions , 1977 .

[255]  S. Dobrokhotov,et al.  On various averaging methods for a nonlinear oscillator with slow time-dependent potential and a nonconservative perturbation , 2010 .

[256]  W. Sarlet On a common derivation of the averaging method and the two-timescale method , 1978 .

[257]  John Bryce McLeod,et al.  An Elementary Approach to a Model Problem of Lagerstrom , 2009, SIAM J. Math. Anal..

[258]  B. Attili Numerical treatment of singularly perturbed two point boundary value problems exhibiting boundary layers , 2011 .

[259]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[260]  William L. Kath Conditions for sustained resonance. II , 1983 .

[261]  Georgi S. Medvedev,et al.  Reduction of a model of an excitable cell to a one-dimensional map , 2005 .

[262]  T. Gamelin Complex Analysis , 2001 .

[263]  Fuqin Sun LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS , 2010 .

[264]  Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations , 2010 .

[265]  Robert M. Miura,et al.  Singular Perturbation Analysis of Boundary Value Problems for Differential-Difference Equations. V. Small Shifts with Layer Behavior , 1994, SIAM J. Appl. Math..

[266]  Lawrence M. Perko,et al.  Higher order averaging and related methods for perturbed periodic and quasi-periodic systems , 1969 .

[267]  Philip Holmes,et al.  Repeated Resonance and Homoclinic Bifurcation in a Periodically Forced Family of Oscillators , 1984 .

[268]  Huang Guan An averaging theorem for a perturbed KdV equation , 2013 .

[269]  Dmitry V. Treschev,et al.  An averaging method for Hamiltonian systems, exponentially close to integrable ones. , 1996, Chaos.

[270]  Jeffrey Rauch,et al.  Hyperbolic Partial Differential Equations and Geometric Optics , 2012 .

[271]  James M. Hyman,et al.  Stability, Relaxation, and Oscillation of Biodegradation Fronts , 2000, SIAM J. Appl. Math..

[272]  C. Frenzen,et al.  A review of the multiple scale and reductive perturbation methods for deriving uncoupled nonlinear evolution equations , 1985 .

[273]  A. Neishtadt On Averaging in Two-Frequency Systems with Small Hamiltonian and Much Smaller Non-Hamiltonian Perturbations , 2003 .

[274]  Claudia Negulescu,et al.  WKB-Based Schemes for the Oscillatory 1D Schrödinger Equation in the Semiclassical Limit , 2011, SIAM J. Numer. Anal..

[275]  M. Janowicz Method of multiple scales in quantum optics , 2003 .

[276]  Leonid V. Kalachev,et al.  A One-Dimensional Reaction/Diffusion System with a Fast Reaction☆ , 1997 .

[277]  F. Chaplais,et al.  Averaging and deterministic optimal control , 1987 .

[278]  B. Willner,et al.  Uniform asymptotic solutiion for a linear ordinary differential equation with one μ-th order turning point: Analytic theory , 1976 .

[279]  Gregor Wentzel,et al.  Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik , 1926 .

[280]  K. Schneider,et al.  Global behavior and asymptotic reduction of a chemical kinetics system with continua of equilibria , 2005 .

[281]  L. E. Fraenkel On the method of matched asymptotic expansions , 1969 .

[282]  Tere M. Seara,et al.  Adiabatic invariant of the harmonic oscillator, complex matching and resurgence , 1998 .

[283]  de Ppn Pieter Groen,et al.  The nature of resonance in a singular perturbation problem of turning point type , 1980 .

[284]  J. Norris,et al.  Averaging over fast variables in the fluid limit for Markov chains: Application to the supermarket model with memory , 2010, 1001.0895.

[285]  OPEN PROBLEM: Convergence, nonconvergence and adiabatic transitions in fully coupled averaging , 2008 .

[286]  Leonid Fridman,et al.  Slow periodic motions with internal sliding modes in variable structure systems , 2002 .

[287]  S. Iyer,et al.  Black-Hole Normal Modes: a WKB Approach , 1987 .

[288]  H. Jeffreys On Certain Approximate Solutions of Lineae Differential Equations of the Second Order , 1925 .

[289]  Yuri Kifer,et al.  Averaging in dynamical systems and large deviations , 1992 .

[290]  John P. Boyd,et al.  Hyperasymptotics and the Linear Boundary Layer Problem: Why Asymptotic Series Diverge , 2005, SIAM Rev..

[291]  Athanassios S. Fokas,et al.  Proof of some asymptotic results for a model equation for low Reynolds number flow , 1978 .

[292]  Rémi Carles,et al.  Semi-Classical Analysis For Nonlinear Schrodinger Equations , 2008 .

[293]  L. Rubenfeld The Passage of Weakly Coupled Nonlinear Oscillators through Internal Resonance , 1977 .

[294]  N. Berglund,et al.  Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach , 2005 .

[295]  Validity of the multiple scale method for very long intervals , 1996 .

[296]  Hongxue Cai,et al.  Radial Structure of Traveling Waves in the Inner Ear , 2003, SIAM J. Appl. Math..

[297]  R. O'Malley,et al.  Boundary Layer Problems Exhibiting Resonance , 1970 .

[298]  G. Ermentrout,et al.  Multiple pulse interactions and averaging in systems of coupled neural oscillators , 1991 .

[299]  R. Shankar Renormalization group approach to interacting fermions , 1994 .

[300]  Joseph E. Flaherty,et al.  Singularly perturbed boundary value problems for nonlinear systems, including a challenging problem for a nonlinear beam , 1982 .

[301]  Robert M. Miura,et al.  Application of a Nonlinear WKB Method to the Korteweg–DeVries Equation , 1974 .

[302]  J. Morrison,et al.  Comparison of the Modified Method of Averaging and the Two Variable Expansion Procedure , 1966 .

[303]  E. Reiss On Multivariable Asymptotic Expansions , 1971 .

[304]  Simon Rosenblat,et al.  On the asymptotic solution of the lagerstrom model equation , 1975 .

[305]  C. Caroli,et al.  Diffusion in a bistable potential: A systematic WKB treatment , 1979 .

[306]  David E. Gilsinn,et al.  A HIGH ORDER GENERALIZED METHOD OF AVERAGING , 1982 .

[307]  A. Majda Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .

[308]  R. Bobryk Closure method and asymptotic expansions for linear stochastic systems , 2007 .

[309]  The Renormalized Two‐Scale Method , 2004 .

[310]  Y. Kifer Averaging principle for fully coupled dynamical systems and large deviations , 2004, Ergodic Theory and Dynamical Systems.

[311]  Y. Sibuya The Gevrey Asymptotics in the Case of Singular Perturbations , 2000 .

[312]  F. Hoppensteadt Analysis of Some Problems Having Matched Asymptotic Expansion Solutions , 1975 .

[313]  Yuri A. Godin,et al.  On the Determination of the Boundary Impedance from the Far Field Pattern , 2010, SIAM J. Appl. Math..

[314]  Jens Lorenz,et al.  On the existence of slow manifolds for problems with different timescales , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[315]  F. A. Howes,et al.  Nonlinear Singular Perturbation Phenomena , 1984 .

[316]  On a Boundary Value Problem for a Nonlinear Differential Equation with a Small Parameter , 1969 .

[317]  R. H. Good,et al.  A WKB-Type Approximation to the Schrödinger Equation , 1953 .

[318]  Oono,et al.  Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[319]  Surstabilité pour une équation différentielle analytique en dimension un , 1990 .

[320]  A. Nayfeh,et al.  The method of multiple scales and non-linear dispersive waves , 1971, Journal of Fluid Mechanics.

[321]  Clark Robinson,et al.  Sustained Resonance for a Nonlinear System with Slowly Varying Coefficients , 1983 .

[322]  Vimal Singh,et al.  Perturbation methods , 1991 .

[323]  Ali H. Nayfeh,et al.  Resolving Controversies in the Application of the Method of Multiple Scales and the Generalized Method of Averaging , 2005 .

[324]  A. B. Vasil’eva ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO CERTAIN PROBLEMS INVOLVING NON-LINEAR DIFFERENTIAL EQUATIONS CONTAINING A?SMALL PARAMETER MULTIPLYING THE HIGHEST DERIVATIVES , 1963 .

[325]  Angelo Luongo,et al.  On the Reconstitution Problem in the Multiple Time-Scale Method , 1999 .

[326]  Kenneth R. Meyer,et al.  Geometric Averaging of Hamiltonian Systems: Periodic Solutions, Stability, and KAM Tori , 2011, SIAM Journal on Applied Dynamical Systems.